
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Solvento iron(IV) oxo complexes in catalytic
oxidations and electron transfer reactions
Hajem Bataineh
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Clinical Psychology Commons, and the Inorganic Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bataineh, Hajem, "Solvento iron(IV) oxo complexes in catalytic oxidations and electron transfer reactions" (2015). Graduate Theses
and Dissertations. 14311.
https://lib.dr.iastate.edu/etd/14311

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/406?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14311?utm_source=lib.dr.iastate.edu%2Fetd%2F14311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

 

Solvento iron(IV) oxo complexes in catalytic oxidations and 

electron transfer reactions 
 

 
by 

 
Hajem Bataineh  

 

 

A dissertation submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 

Major: Inorganic Chemistry 
 
 

Program of Study Committee: 
Andreja Bakac, Co-Major Professor 
Aaron Sadow, Co-Major Professor 

William Jenks 
Javier Vela 
Keith Woo 

 
 
 

 
 
 

 
Iowa State University 

 
Ames, Iowa 

 
2015 

 
 

Copyright © Hajem Bataineh, 2015. All rights reserved. 



www.manaraa.com

ii 
 

DEDICATION 

 

To my parents, brothers and sisters: 

Thank you for your endless support, encouragement and love. 



www.manaraa.com

iii 
 

TABLE OF CONTENTS 

              Page 

 

ACKNOWLEDGMENTS ......................................................................................... v 

ABSTRACT ............................................................................................................... vi 

CHAPTER 1   GENERAL INTRODUCTION ......................................................... 1 

 Introduction .......................................................................................................... 1 
  Mononuclear nonheme iron-oxo complexes .................................................. 1 
  Reactivity of nonheme Fe(IV)-oxo complexes .............................................. 2 
  Factors affecting the reactivity of nonheme Fe(IV)-oxo complexes ............. 4 
  Aqueous iron(IV)-oxo complex ..................................................................... 6 
  Electron transfer properties of nonheme iron(IV)-oxo complexes ................ 7 

Dissertation Organization .................................................................................... 10 
 References ............................................................................................................ 10 

CHAPTER 2   pH-INDUCED MECHANISTIC CHANGEOVER FROM 
HYDROXYL RADICALS TO IRON(IV) IN THE FENTON REACTION ............ 14 

 
 Abstract …........................................................................................................... 14 
 Introduction .......................................................................................................... 15 
 Experimental ........................................................................................................ 16 
 Results .................................................................................................................. 17 
  Products and stoichiometry ............................................................................ 17 
  Kinetics of Fe(II)-H2O2 reaction at pH 6-7 .................................................... 22 
 Discussion ............................................................................................................ 27 
 Conclusions .......................................................................................................... 29  
 Acknowledgment ................................................................................................. 30 

Supplemental Information (shown in Appendix A)............................................. 30 
 References ............................................................................................................ 30 

CHAPTER 3   Fe(II) CATALYSIS IN OXIDATION OF HYDROCARBONS 
WITH OZONE IN ACETONITRILE ....................................................................... 33 
  
 Abstract …........................................................................................................... 33 
 Introduction .......................................................................................................... 34 
 Experimental ........................................................................................................ 35 
  Procedures ...................................................................................................... 36 
  Competition experiments ............................................................................... 37  
 Results .................................................................................................................. 38 
  Kinetics .......................................................................................................... 42 



www.manaraa.com

iv 
 

  Effect of Fe(III), O2 and water ....................................................................... 47 
  Competition experiments ............................................................................... 48   
 Discussion ............................................................................................................ 51 

Conclusions .......................................................................................................... 56 
 Acknowledgment ................................................................................................. 57 
 Supplemental Information (shown in Appendix B) ............................................. 57 
 References ............................................................................................................ 57 

CHAPTER 4   ELECTRON TRANSFER REACTIVITY OF AQUEOUS 
IRON(IV) OXO COMPLEX ..................................................................................... 60 
  
 Abstract ............................................................................................................... 60 
 Introduction .......................................................................................................... 61 

Experimental ........................................................................................................ 63 
Materials ........................................................................................................ 63 
Procedures ...................................................................................................... 64 

 Results .................................................................................................................. 67 
  Polypyridyl complexes of Fe(II), Ru(II) and Os(II) ...................................... 67 
  Phenothiazines (CPZ and TFP) ...................................................................... 69 

HABTS-.......................................................................................................... 70 
Other substrates .............................................................................................. 70 

 Discussion ............................................................................................................ 74 
 Conclusions .......................................................................................................... 80  
 Acknowledgment ................................................................................................. 81 

Supplemental Information (shown in Appendix C) ............................................. 81 
 References ............................................................................................................ 81 

GENERAL CONCLUSIONS .................................................................................... 86 
References ............................................................................................................ 88 

APPENDIX A   pH-INDUCED MECHANISTIC CHANGEOVER FROM 
HYDROXYL RADICALS TO IRON(IV) IN THE FENTON REACTION ............ 90 
 
APPENDIX B   Fe(II) CATALYSIS IN OXIDATION OF HYDROCARBONS 
WITH OZONE IN ACETONITRILE ....................................................................... 110 
 
APPENDIX C   ELECTRON TRANSFER REACTIVITY OF AQUEOUS 
IRON(IV) OXO COMPLEX ..................................................................................... 131 
 

 

 



www.manaraa.com

v 
 

ACKNOWLEDGMENTS 

 

I would like to thank my major professor, Dr. Andreja Bakac, for her guidance, 

encouragement, patience and friendship.  I would also like to thank the other committee 

members for their comments and support. 

In addition, I would also like to thank my friends, colleagues, the chemistry 

department faculty and staff for making my time at Iowa State University a wonderful 

experience.  

I would especially like to thank my current and former fellow group members for their 

insightful discussions, and friendship. 

Finally, thanks to my family for their encouragement and support throughout my life.  

 



www.manaraa.com

vi 
 

ABSTRACT 

 

Iron(IV)-oxo species are powerful oxidants that are involved as intermediates in iron-

catalyzed oxidations of organic substrates.  This includes their role in enzymatic oxidations 

which provided strong incentive to generate, characterize and explore the chemistry of novel 

Fe(IV) compounds from the perspective or reactivity and mechanism.  The simplest iron(IV) 

complexes that have been prepared in solution are aqueous Fe(IV)-oxo ions.  Even though 

these species can be conveniently generated from Fe(II) precursors and oxygen atom donors, 

studies of the chemistry of aqueous iron(IV) are difficult because of their short lifetime, high 

reactivity, and sensitivity to the surroundings.  Herein we describe how changes in the pH, 

coordinating ligands and solvent can lead to dramatic changes in the lifetime and chemistry 

of aqueous Fe(IV)-oxo complexes.   

 
pH-Induced Mechanistic Changeover From Hydroxyl Radicals to Iron(IV) in the Fenton 
Reaction 
 

A major pathway in the reaction between Fe(II) and H2O2 at pH 6-7 in non-

coordinating buffers exhibits inverse kinetic dependence on [H+] and leads to oxidation of 

dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO2).  This step regenerates Fe(II) and 

makes the oxidation of DMSO catalytic, a finding that strongly supports Fe(IV) as a Fenton 

intermediate at near-neutral pH.  This Fe(IV) is a less efficient oxidant for DMSO at pH 6-7 

than is (H2O)5FeO2+, generated by ozone oxidation of Fe(H2O)6
2+, in acidic solutions.  Large 

concentrations of DMSO are needed to achieve significant turnover numbers at pH≥6 owing 

to the rapid competing reaction between Fe(II) and Fe(IV) that leads to irreversible loss of 

the catalyst.  At pH 6 and ≤0.02 mM Fe(II), the ratio of apparent rate constants for the 

reactions of Fe(IV) with DMSO and with Fe(II) is ~104.  The results at pH 6-7 stand in stark 
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contrast with those reported previously in acidic solutions where Fenton reaction generates 

hydroxyl radicals.  Under those conditions, DMSO is oxidized stoichiometrically to 

methylsulfinic acid and ethane.  This path still plays a minor role (1-10%) at pH 6-7. 

Fe(II) Catalysis in Oxidation of Hydrocarbons with Ozone in Acetonitrile 

Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by 

sub-millimolar concentrations of Fe(CH3CN)6
2+.  The catalyst provides both rate acceleration 

and greater selectivity toward the less oxidized product.  For example, Fe(CH3CN)6
2+-

catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%) 

whereas uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid.  

Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to 

cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde.  The kinetics 

of oxidation of alcohols and diethyl ether are first order in Fe(CH3CN)6
2+ and ozone, and 

independent of [Substrate] at concentrations greater than ~5 mM.  In this regime, the rate 

constant for all of the alcohols is approximately the same, kcat = (8±1) × 104 M-1 s-1, and that 

for (C2H5)2O is (5±0.5) × 104 M-1 s-1.  In the absence of substrate, Fe(CH3CN)6
2+ reacts with 

O3 with k5 = (9.3±0.3) × 104 M-1 s-1.  The similarity between the rate constants k5 and kcat 

strongly argues for Fe(CH3CN)6
2+/O3 reaction as rate determining in catalytic oxidation.  The 

active oxidant produced in Fe(CH3CN)6
2+/O3 reaction is suggested to be an Fe(IV) species in 

analogy with a related intermediate in aqueous solutions.  This assignment is supported by 

the similarity in kinetic isotope effects and relative reactivities of the two species toward 

substrates. 
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Electron Transfer Reactivity of Aqueous Iron(IV) oxo Complex 

The reactivity of Feaq
IVO2+, generated in the reaction of Feaq

2+ and ozone at pH 1, 

toward various inorganic complexes and some organic substrates, including ferrocene 

derivatives, Ni(II) macrocyclic tetraamines complexes, polypyridyl complexes of Os(II), 

Fe(II) and Ru(II), phenothiazines, HABTS-, Na3IrCl6, CoII(dmgBF2)2 and Ce(ClO4)3 with 

reduction potentials ranging from 0.52 to 1.7 V has been studied at room temperature.  All 

substrates have shown to react with Feaq
IVO2+ quantitatively producing the 1e oxidation 

product except for the phenothiazines and polypyridyl complexes of Fe(II) and Ru(II).  

Phenothiazines reacted through oxygen atom transfer to produce sulfoxides while the 

reactions with polypyridyl complexes of Fe(II) and Ru(II) were complicated and showed no 

Fe(III) or Ru(III) formation. The obtained second order rate constants of these reactions are 

within 104 – 108 M-1 s-1 with no straightforward relation to reduction potentials. Among all 

the substrates, Os(phen)3
2+ seems to react through outer-sphere ET. In addition, the no 

dependence of Os(phen)3
2+ reactivity on acid concentration (0.05 – 0.2 M) indicates no prior 

protonation of the Feaq
IVO2+, which is consistent with stepwise electron-transfer followed by 

proton transfer. Our results suggest that the Feaq
IVO2+/Feaq

IIIO+ potential is not much lower 

than that for Os(phen)3
3+/ Os(phen)3

2+ couple (0.84 V vs. NHE). 
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GENERAL INTRODUCTION 

 
Introduction 

 

Iron(IV) species have attracted a considerable amount of attention in the past few years, 

especially after the discoveries of nonheme iron(IV) active site in several enzymatic systems1-4 

and the recent approaches to design a green synthetic catalyst,5 considering their novel properties 

like oxidation power, selective reactivity and low environmental impact. Many researchers have 

focused on synthesis and characterization of iron(IV) complexes in attempts to mimic and 

understand the chemistry of both heme and nonheme enzymes utilizing iron centers. Such 

complexes have shown to be strong oxidants capable of abstracting hydrogen atom in C-H bond 

activation reactions.6,7 

Mononuclear nonheme iron-oxo complexes 

Mononuclear nonheme iron-oxo (Fe(IV)-oxo) complexes are of particular interest for 

catalytic applications in context of the metabolically vital oxidative transformations that 

nonheme iron enzymes generating iron(IV)-oxo intermediates can perform in nature, represented 

by their involvement in the catalytic cycle of dioxygen activation and the wide range of 

oxidation reactions they perform, including hydroxylation, halogenation, desaturation, 

epoxidation, cis-dihydroxylation, and aromatic ring cleavage reactions.8,9 However, the 

successful synthesis and characterization of such complexes have been limited by their high 

reactivity and instability under ambient conditions.6,10 

The first spectroscopic evidence for mononuclear nonheme iron(IV)-oxo species was 

reported in 2000 by  Grapperhaus et al. in the ozonolysis of [FeIII(cyclam-acetato)(CF3SO3)]+ 

(cyclam-acetato = 1-(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane) in acetone/water.10 

However, the breakthrough in the synthetic iron(IV)-oxo chemistry happened in 2003, when the 
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first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic 

supporting ligand, [(TMC)FeIV(O)]2+ was obtained.11 The remarkable stability of this complex 

provided the first well-characterized nonheme iron(IV)-oxo complex with a detailed 

spectroscopic analyses. Since then, a wide range of mononuclear nonheme iron(IV)-oxo 

complexes, stabilized by polyamine azamacrocycles or acyclic aminopyridine ligands (Fig. 1) 

have been synthesized and characterized by spectroscopic methods.6,10-22 These iron(IV)-oxo 

complexes have been generated under various reaction conditions, at low or room temperatures 

and in different solvents by reacting an Fe(II)/Fe(III) precursor with oxygen atom donors such as 

iodosylbenzene (PhIO),6,11,13-16 peracids,16-19 hydroperoxides,11,16,20 NaOX (X = Cl or Br),21 

potassium monopersulfate (KHSO5)16 or O3.10,22 Most of the synthetic iron(IV)-oxo complexes 

contain intermediate-spin (S = 1) ferryl center rather than the high-spin iron(IV)-oxo (S = 2) 

generally involved in natural nonheme enzymatic reactions. However, a number of high-spin 

iron(IV)-oxo species have been trapped and characterized by different spectroscopic 

methods.7,22-26 

  Reactivity of nonheme Fe(IV)-oxo complexes 

The successful characterization of a wide range of mononuclear nonheme iron(IV)-oxo 

complexes provided researchers with enough spectroscopic data to identify such species, when 

generated as reaction intermediates and to study their reactivity in various reactions, such as 

aliphatic hydroxylation,6,18 olefin epoxidation,18,19 alcohol oxidation,27,28 C−H bond activation of 

alkylaromatics,29 N-dealkylation,30 aromatic hydroxylation,31 oxidation of sulfides and 

phosphines,11,16,29,32,33 and electron- and hydride-transfer (Fig 2).34,35 These studies reveal the 

high oxidation power of these synthetic Fe(IV)-oxo complexes and show their efficiency and 

selectivity in the catalytic oxidation of  hydrocarbons, making them a useful enzymatic models. 
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For example, both [(N4Py)FeIV=O]2+ and [Me3NTB)FeIV=O]2+ activate strong C–H bonds, such 

as in cyclohexane (99.3 kcal mol-1), at room and low temperatures (-40 oC) respectively, and 

found to be more reactive than the Fe(IV)-oxo porphyrin π-cation radical in compound I of 

cytochrome p450. Compound I is a potent oxidant that can hydroxylate inert C-H bonds with 

bond dissociation energies exceeding 95 kcal/mol.6,36,37 Adding to that, the reaction rates of C-H 

bond activation were found to correlate with bond dissociation energies (BDE) of the substrates 

with a large kinetic isotope effect (KIE ~ 30), similar to KIE for H-atom abstraction by nonheme 

iron enzymes.38 

 

Figure 1. Some of the ligands used to generate nonheme iron(IV)-oxo complexes.  
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Figure 2. Examples of reactions of synthetic mononuclear nonheme iron(IV)-oxo complexes. 
 
Factors affecting reactivity of nonheme Fe(IV)-oxo complexes  

The effect of coordinating ligands, solvent, and pH have been studied in attempts to tune 

the reactivity and stability of such complexes. The identity of the axial ligands has been found to 

significantly change the reactivity of [FeIV(O)(TMC)(X)]n+ complexes (1) (X = CH3CN, 

CF3COO-, or N3
-) toward oxo-transfer to PPh3, and H-atom abstraction from phenol O-H and 

alkylaromatic C-H bonds. Replacement of CH3CN with anionic axial ligand decreases the 
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electrophilicity of Fe(IV)–oxo unit lowering its reactivity The observed reactivity order in the 

oxidation of PPh3 is 1-NCCH3 > 1-OOCCF3 > 1-N3. However, the reactivity order was the 

opposite in the oxidation of phenol O-H and alkylaromatic C-H bonds,  i. e. 1-N3 > 1-OOCCF3 > 

1-NCCH3.29 Quantum mechanical calculations show a decrease in the gap between the ground 

and the excited states with the more electron-donating axial ligand, which enhances the overall 

reactivity in H-atom abstraction. Also, it was found that replacing the axial CH3CN ligand in 

[FeIV(O)(TMC)(NCCH3)]2+ with anions would result in complexes with shorter lifetimes.16,39 

A number of studies have focused on enhancing Fe(IV)-oxo stability and reactivity by 

changing the supporting ligands. [FeIV(O)(TMC)]2+ has shown a low reactivity in hydrogen- and 

oxygen-atom transfer reactions (HAT and OAT.  However, the synthesis of Fe(IV)-oxo complex 

bearing smaller TMC ring (13-TMC = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane) 

resulted in a much more reactive Fe(IV)-oxo unit. The 13-TMC complex is ∼3.0 × 103 times 

more reactive in HAT reactions and ∼3.0 × 105 times more reactive in OAT reactions at -40 oC, 

which is attributed to the 0.22 V increase in the FeIV/III redox potential.40 The effect of ligand 

topology on two Fe(IV)-oxo complexes, cis-α-[FeIV(O)(BQCN)]2+ and cis-β-[FeIV(O)(BQCN)]2+  

(BQCN = N,N-dimethyl-N,N-bis(8-quinolyl)cyclohexanediamine), was examined and found that 

the cis-α-[FeIV(O)(BQCN)]2+ complex is more reactive in C-H bond activation and sulfide 

oxidation reactions. Difference in reactivities was attributed to the higher 0.11 V FeIV/III redox 

potential of the cis-α isomer.41 On the other hand, the synthesis of high spin (S =2) Fe(IV)-oxo 

complexes was achieved by using tripodal tetradentate N4 ligands, such as TPA and Me3NTB. 

Such complexes were found to be very strong oxidants.19,37,42 

Solvent is an important factor in generating Fe(IV)-oxo species. For example, 

[(TMC)FeII]2+ is stable in aerated or O2-saturated  CH3CN at 25 oC. However, when a solvent 
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mixture (1:1 v/v) of CH3CN and ethanol, butyl ether, or THF was used, [(TMC)]FeIV(O)]2+ was 

formed from the reaction of [(TMC)FeII]2+ and O2.
32

 Another example is the reaction of [FeII(β-

BPMCN)]2+ (BPMCN = N,N′-bis(2-pyridylmethyl)-N,N′-dimethyl-trans-1,2-

diaminocyclohexane) with tert-butyl hydroperoxide to generate Fe(IV)-oxo species. In CH3CN 

at -40 oC [FeIV(β-BPMCN)(O)(NCMe)]2+ complex was formed, but in CH2Cl2 at -70 oC [FeIV(β-

BPMCN)(OOtBu)(OH)]2+ was formed.43  

The pH of reaction solution could remarkably affect the stability of the Fe(IV)-oxo 

complex. The stability and reactivity of [FeIV(N4Py)(O)]2+ was investigated in buffered solvent 

mixture (3:1 v/v) of H2O and CH3CN at 10 oC at pH 5-9. [FeIV(N4Py)(O)]2 is stable at pH 5-6 

but decays at a fast rate at higher pH, especially pH >7. The reactivity toward sulfide oxidation 

found to have very little dependence on the pH (pH 5-7) with only ~ 1.6-fold increases in the rate 

going from pH 5 to 7.16 In addition, [Fe(H2O)5(O)]2+ has been reported to be stable for several 

seconds at low pH 0-2, but decays faster at higher pH.22,44  

Aqueous Fe(IV)-oxo 

Aqueous Fe(IV) (Feaq
IV) has long been considered as intermediate in the oxidation of FeII 

by H2O2 in water (Fenton reaction).45 However, the formation of Feaq
IV in Fenton reaction has 

always been debated and invoked as alternative oxidant to the hydroxyl radical.45,46 The 

extremely short-life for such species and sensitivity to their chemical environment make it 

difficult to get solid evidence about their formation. Recently, we have provided evidence about 

the formation of Feaq
IV in Fenton reaction under certain conditions (see Chapter 1).47 In addition, 

aqueous Fe(IV)-oxo (Feaq
IVO2+) have been reported to form in the reaction of Feaq

II and oxygen-

atom donors other than H2O2, such as O3 and HOCl. The fair stability of the Fe(IV) species 

formed in the Feaq
II and ozone reaction in acidic solutions, life-time of 10 s at pH 1 at room 
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temperature, allowed their full characterization using various spectroscopic methods and 

confirmed to be Feaq
IVO2+.22 

Despite the high reactivity of the Feaq
IVO2+ and the fact that it is the first synthetic 

complex with a high spin (S = 2) Fe(IV)-oxo unit, similar to intermediates involved in natural 

nonheme enzymatic reactions, the number of reports on its chemistry are limited.22,28,33,44,48 It has 

been shown that Feaq
IVO2+ is a highly reactive species capable of oxidizing a wide range of 

organic substrates, such as sulfoxides, alcohols, ethers, aldehydes, phenol, carboxylic acids, 

acetone, and acetonitrile, by various mechanisms including oxygen-, hydride- and H-atom 

transfer.22,28,33,48 Noteworthy, reactions with alcohols, ethers and aldehydes proceed through two 

parallel 1-e (H-atom transfer) and 2-e (hydride transfer) pathways.28 The hydride path is catalytic 

as it generates Feaq
2+ which can be reoxidized to FeaqO2+. However, the catalytic efficiency is 

poor because of the loss of the catalyst (Feaq
2+) as Feaq

3+ in the 1-e path. In this current work we 

show that catalysis can be improved by changing the solvent to CH3CN (see Chapter 2).   

Electron transfer properties of nonheme Fe(IV)-oxo complexes 

Many reports have been focused on the reactivities of synthetic Fe(IV)-oxo complexes 

with wide range of organic substrates. However, only few reports have investigated the 

fundamental electron-transfer (ET) properties of such complexes with different organometallic or 

inorganic substrates.34,48-52 [(TMC)FeIV(O)]2+ reacts with ferrocene (Fc) forming ferrocenium ion 

(Fc+) and [(TMC)FeIII(O)]+. The ET process found to exhibit equilibrium and the one-electron 

reduction potentials (Ered) of [(TMC)FeIV(O)]2+ was determined  to be 0.39 V vs SCE.34 The one-

electron reduction potentials of other Fe(IV)-oxo complexes, [(Bn-TPEN)FeIV(O)]2+ and  

[(N4Py)FeIV(O)]2+ were determined the same way and found to be 0.49 V and 0.51 V vs. SCE 

respectively. The reactions of these complexes with Fc and some ferrocene derivatives found to 
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proceed through outer-sphere ET and their reactivities were recently53 review by Fukuzumi and 

found to follow Marcus theory of electron transfer (eq. 1)54 where Z is the collision frequency  

��� = � exp (
− �

4� �1 + ∆���
 �

�

��� )                                                                                             (1) 

(1×1011M−1 s−1), λ is the reorganization energy of electron transfer, kB is the Boltzmann constant, 

T is the absolute temperature, and ΔGET is the free energy change of electron transfer (see Table 

1). 

Also, it was pointed out that the flexibility of the ligand would result in larger reorganization 

energy. For [(bisp)FeIV(O)]2, which bears the more rigid bispidine ligand, the reorganization 

energy (2.05 eV) is significantly smaller compared to the other Fe(IV)-oxo complexes in Table 

1. Also the reduction potential of [(bisp)FeIV(O)]2+ (0.73 V vs. SCE) is one of the highest 

compared to other  synthetic Fe(IV)-oxo complexes which is attributed to the rigid structure of 

the ligand that makes the Fe(IV) metal center more electron deficient.49,53  

The protonation of the Fe(IV)-oxo unit by Brønsted acid or the binding of metal ions, 

acting as Lewis acid such as Sc3+, to the Fe(IV)-oxo unit have shown to enhance the reduction 

potential and significantly promote the ET process.51,52 For example, no ET was observed 

between [(N4Py)FeIV(O)]2+ complex (E = 0.51 V vs. SCE) and  [RuII(Clphen)3]2+ (Clphen = 5-

chlorophenathrene) (E = 1.36 V vs. SCE) in CH3CN at 25 oC, as expected. However, ET 

occurred efficiently in the presence of HClO4 by proton-coupled electron-transfer.52  
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Table 1. ET Rate Constants (kET), and Reorganization Energies (λ) of One-electron Reduction of 
some Nonheme Fe(IV)-oxo Complexes by Ferrocene Derivatives and the One-electron 
Reduction Potentials of the Fe(IV)-oxo Complexes (EFeO)  and the Ferrocene Derivatives (EFc).a 

 
  kET (M-1 s-1) 

Electron donor 
EFc 

(V vs. SCE) 
[(TMC)FeIV(O)]2+ [(Bn-TPEN)FeIV(O)]2+ [(N4Py)FeIV(O)]2+ 

Ferrocene (Fc) 0.37 14 24 5 

n-Amyl-Fc 0.31 39 45 15 

Dimethyl-Fc 0.26 1.0 x 102 1.0 x 102 24 

Octamethyl-Fc - 0.04 2.7 x 104 2.3 x 104 3.0 x 103 

Decamethyl-Fc - 0.08 6.3 x 104 4.3 x 104 7.0 x 103 

EFeO (V vs. SCE)  0.39 0.49 0.51 

λ (eV)  2.37 2.55 2.74 

a All data are adopted from ref. 34 and 53. 
see Fig. 1 for ligands names abbreviations. 

On the other hand, the electron transfer properties of the Feaq
IVO2+ species are still 

unexplored and is the topic of Chapter 3 in this thesis.  The only literature report related to this 

subject deals with the kinetics of oxidation of several inorganic substrates, i. e. HSO3-, NO2-, 

Mn2+ and Cl-. Reactions were concluded to take place by electron transfer based on the linear 

relationship between log k and the standard one electron potential of the substrate.48 

All previous reports have shown that synthetic mononuclear nonheme Fe(IV)-oxo 

complexes are very powerful oxidants, with similar to higher reactivities in contrast to the 

natural enzymatic systems, capable of reacting with wide range of organic and inorganic 

substrates through different mechanisms. In addition, reports have shown that these complexes 



www.manaraa.com

       10 

are sensitive to their chemical environment and a moderate change in the environment can 

dramatically alter their reactivities and stability. The current work focuses on the chemistry of 

aqueous Fe(IV)-oxo species and the factors that affect their reactivity and stability. Changes in 

the pH, coordinating ligands and solvent are found to have a dramatic effect on the life time and 

chemistry of Fe(IV) as described in this dissertation. 

Dissertation Organization 

This dissertation consists of three chapters. Chapter one has been published in Chemical 

Science. Chapter two corresponds to a manuscript ready to be submitted to ACS Catalysis. 

Chapter three corresponds to a manuscript in preparation. Each chapter is self-contained with its 

own equations, figures, tables, and references.  
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CHAPTER 2 

 

pH-INDUCED MECHANISTIC CHANGEOVER FROM HYDROXYL RADICALS TO 
IRON(IV) IN THE FENTON REACTION 

 

A paper published in Chemical Science*  

 

Abstract 

A major pathway in the reaction between Fe(II) and H2O2 at pH 6-7 in non-coordinating 

buffers exhibits inverse kinetic dependence on [H+] and leads to oxidation of dimethyl sulfoxide 

(DMSO) to dimethyl sulfone (DMSO2).  This step regenerates Fe(II) and makes the oxidation of 

DMSO catalytic, a finding that strongly supports Fe(IV) as a Fenton intermediate at near-neutral 

pH.  This Fe(IV) is a less efficient oxidant for DMSO at pH 6-7 than is (H2O)5FeO2+, generated 

by ozone oxidation of Fe(H2O)6
2+, in acidic solutions.  Large concentrations of DMSO are 

needed to achieve significant turnover numbers at pH≥6 owing to the rapid competing reaction 

between Fe(II) and Fe(IV) that leads to irreversible loss of the catalyst.  At pH 6 and ≤0.02 mM 

Fe(II), the ratio of apparent rate constants for the reactions of Fe(IV) with DMSO and with Fe(II) 

is ~104.  The results at pH 6-7 stand in stark contrast with those reported previously in acidic 

solutions where Fenton reaction generates hydroxyl radicals.  Under those conditions, DMSO is 

oxidized stoichiometrically to methylsulfinic acid and ethane.  This path still plays a minor role 

(1-10%) at pH 6-7. 

 

 

                                                 
* Bataineh, Hajem; Pestrovsky, Oleg; Bakac, Andreja Chem. Sci. 2012, 3 1594 - 1599 
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Introduction 

The reaction between iron(II) and hydrogen peroxide (Fenton reaction)1 is one of the best 

known and most widespread oxidation reactions.  In addition to its natural occurrence in 

biology,2-5 environment6, and atmosphere,7 this reaction is a key step in iron-based advanced 

oxidation processes (AOP)8 for waste-water treatment and soil remediation.   

The ubiquity and effectiveness of the Fenton reaction stems from the fact that two widely 

available and stable reagents generate an intermediate capable of oxidizing a wide variety of 

organic and inorganic substrates.  The exact nature of the intermediate(s) has been debated for 

decades.9-14  Most of the discussion focused on hydroxyl radicals4,11,14 and an Fe(IV) species,10 

i.e. products generated by one-electron and two-electron transfers, respectively.  Reaction 

products and kinetics of oxidation of various substrates strongly support HO• in acidic 

solutions.13  Mechanistic studies took advantage of the independently known chemistry15,16 of 

HO• and often utilized specific HO• scavengers as diagnostic tools.  None the less, the issue was 

not fully resolved until the ferryl(IV) ion, (H2O)5FeIVO2+, was generated and characterized 

independently.17-20  As expected, it was found that most substrates react with Fe(IV) and with 

HO• to yield identical products, but several crucial exceptions exist.  Most notably, dimethyl 

sulfoxide reacts with Fe(IV) by oxygen atom transfer and yields dimethyl sulfone, (CH3)2SO2,19 

whereas hydroxyl radicals generate methyl sulfinic acid and ethane (via free methyl radicals), 

Scheme 1.15,16  Methylsulfinic acid and ethane are also produced in the Fenton reaction.21  These 

and related observations rule out (H2O)5FeO2+ and establish HO• as the Fenton intermediate at 

pH ≤3.19   

Other studies, both experimental22-26 and computational27-29 suggest, however, that Fe(IV) 

may be involved in some cases.  Most convincing evidence for Fe(IV) was obtained in studies at 
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higher, near-neutral pH.  Hug et al22,30,31 invoked an intermediate different from hydroxyl 

radicals, most likely an Fe(IV) species, to explain the failure of 2-propanol to quench the 

oxidation of As(III) with the Fenton reagent at neutral pH.  This interpretation received support 

from several other groups,32-35 but was questioned by Pang et al who proposed that surface 

interactions, and not Fe(IV), were responsible for the observed behavior in these inhomogeneous 

environments.36,37  

 

Scheme 1. 

As part of our on-going interest in high-valent iron chemistry and the Fenton reaction, we 

conducted an in depth study of the kinetics and products of the reaction of Fe(H2O)6
2+ and H2O2 

at 6≤pH≤7 in the presence of non-coordinating buffers.  Here we present our results.  We also 

draw attention to a misstatement in our earlier publication19 regarding the involvement of 

hydroxyl radicals in neutral solutions.  That work was done at a natural pH in unbuffered 

solutions (initial pH ~7).  We failed to take into account the increase in acid concentration by 

hydrolysis of Fe(III) produced in the course of the reaction.  This lowering of the pH was the 

reason for the formation of hydroxyl radicals.   

Experimental 

Stock solutions of iron(II) perchlorate in H2O or D2O were prepared freshly before each 

set of experiments and standardized with phenanthroline.  All of the solutions were handled 

anaerobically under argon.  The solvent was H2O for kinetic studies, and D2O for NMR product 
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analysis.  The pH (pD) was controlled with noncoordinating tertiary amine buffers39 MES (pKa 

6.06), MOPS (pKa 7.09), MOBS (pKa 7.48) and PIPBS (pKa1 4.29, pKa2 8.55) or with phosphate 

buffers (pH 6-8).  Buffer concentrations were typically 8-50 times greater than the concentration 

of the limiting reagents so as to hold the pH at the desired value without interfering with the 

NMR spectra or altering the chemistry.  The pH decrease was less than 0.2 units in kinetics 

experiments, and 0.3-0.5 units in the NMR experiments.  

The stoichiometry was determined from absorbance changes at 270 nm using ∆ε270 = 

2650±50 M-1 cm-1 at pH 6-7.  This value was obtained on solutions generated by mixing Fe(II) 

(0.01 - 0.02 mM) with excess H2O2 (0.1 - 1.5 mM) either in the stopped flow or in a 

conventional spectrophotometer as described in detail in SI.  After Fe(III) was generated, the 

absorbance at 270 nm remained constant for at least five minutes, showing that the turbidity or 

precipitation of iron(III) did not affect absorbance readings.  This point is also illustrated in the 

kinetic plots in Figures S6-S8, all of which exhibit the same ∆ε, even though the reaction times 

vary by a factor of 14.  

Results 

Products and stoichiometry   

The products of the Fe(II)/H2O2/(CH3)2SO reaction in D2O buffered with either 

phosphate or noncoordinating tertiary amine buffers (MES, MOPS or PIPBS) under air-free 

conditions were determined by 1H NMR.  In tertiary amine buffers the reaction generated 

(CH3)2SO2 (6% yield at pH 6-7, [(CH3)2SO]0 = 36 mM, [MES] = 10 mM), Figures 1 and S1. 

Increasing buffer concentration from 10 to 24 mM had no effect on the nature or yield of 

products, which rules out the involvement of buffer in the reaction.  Additional comments on 

noninterference of buffers is provided in SI.   
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The yields of (CH3)2SO2 in MES buffer under conditions in Figure 1 increased four-fold 

when Fe(II) was added slowly with a syringe pump.  Also, as shown later, higher concentrations 

of dimethyl sulfoxide led to a systematic increase in the amount of (CH3)2SO2 produced.  These 

observations demonstrate a competition for the reactive intermediate between the sulfoxide to 

generate sulfone, and Fe(II) to generate Fe(III).  The most reasonable candidate for this 

intermediate is an Fe(IV) species.  Attempts to prepare Fe(IV) at pH 6 from Fe(II) and ozone19 

and to examine its chemistry directly were not successful owing to its rapid decomposition at this 

pH.  However, the kinetic and product data described below provide overwhelming support for 

Fe(IV) as a key intermediate.   

 

 

Figure 1. 1H NMR spectrum of the products obtained in MES buffer (10 mM) at pD 6.8 and 
acidified to pD 1 after the reaction.  Conditions: 1.2 mM Fe(ClO4)2, 1.1 mM H2O2 and 36 mM 
(CH3)2SO.  13C satellite peaks are denoted with an asterisk.   

Strikingly, when the Fe(II)/H2O2/(CH3)2SO reaction was run in phosphate buffers, the 
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products changed to ethane (60% yield at pH 7) and methylsulfinate (25%), indicative of HO• 

radicals,19 Figure 2 and Table 1.  The yields of methylsulfinate are lower than expected for 

reasons that are not fully understood, but most likely some of the anion is complexed with the 

Fe(III) product and thus not detected by NMR.  The yields of all of the products in both tertiary 

amines and phosphate buffers decreased significantly as the pH increased from 6 to 8, but the 

prevalence of •OH-derived products in phosphate and of 2-e products in noncoordinating buffers 

remained throughout, Table 1. 

 

 

Figure 2.  1H NMR spectrum of the products obtained in phosphate buffer (10 mM) at pD 7.6.  
Conditions: 1.0 mM Fe(ClO4)2, 1.0 mM H2O2, 15 mM (CH3)2SO.   



www.manaraa.com

       20 

Table 1.  GC Peak Areas for Methane and Ethane Generated in the Fenton Reaction with 
(CH3)2SOa 

Initial pHb Buffer/(conc/mM) Ethanec Methanec 

6.1 MES (16) (1) 15 

6.1 phosphate (19) 1200d 76 

7.0 MOPS (15) 0.5 6 

8.2 MOBS (19) 3 7 

8.0e phosphate (10) 65 17 

a Obtained by injecting 80 µL of head gas into gas chromatograph.  Reaction conditions: 0.93 ± 
0.03 mM Fe(ClO4)2, 0.95 ± 0.03 mM H2O2, 66 mM DMSO.  b pH decreased in the course of the 
run by 0.2 units. c Relative peak areas in gas chromatograms.  d Absolute concentration = 0.27 
mM (60% of theoretical yield).  e [Fe(ClO4)2]0 = [H2O2]0 = 0.40 mM, [DMSO] = 39 mM. 

 

para-Tolyl methyl sulfoxide, (CH3C6H4)S(O)CH3) (TMSO) in PIPBS buffer at pH 6-7 

was oxidized to TMSO2 (35 % yield, [TMSO]0 = 30-50 mM, [Fe(ClO4)2]0 = (1-2) mM, [H2O2]0 

= (1-2) mM), Figure S2.  No products were observed in phosphate buffer, Figure S3, similar to 

our earlier results in acidic solutions in the absence of buffers where HO• radical was established 

as the reaction intermediate.19  

In experiments with large concentrations of (CH3)2SO and excess H2O2, Table 2, the 

oxidation of sulfoxides becomes catalytic in tertiary amine buffers but not in phosphate.  In MES 

(Table 2, entries 1-3) the reaction of 0.2 mM H2O2 with 0.02 mM Fe(II) consumed 0.02 mM 

H2O2 in the absence of substrate, 0.08 mM H2O2 in the presence of 45 mM (CH3)2SO, and all of 

the H2O2 (0.2 mM) at 0.96 M (CH3)2SO, leading to an overall stoichiometry ∆[H2O2]/ ∆[Fe(II)] = 

10 at the highest [(CH3)2SO].  Large, nonstoichiometric amounts of H2O2 were also consumed at 

pH 7 (entry 4).   
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Table 2.  Effect of Buffers and Concentration of (CH3)2SO on Yields of (CH3)2SO2
a 

Entry Bufferb [H2O2]0 [Fe(II)]0 [(CH3)2SO] [H2O2]∞
 Fe(II)∞

 [(CH3)2SO2]∞
 

)]II(Fe[

]OH[ 22

∆
∆  

1 MES 0.20 0.020 0 0.18 0  ~1 

2 MES 0.20 0.020 45 0.12 0  4 

3 MES 0.20 0.020 960 0 0  10 

4 MOPSc 0.20 0.020 1090 0.06   7 

5 MES d,e 0.49 0.49 190 0 0.18 0.26 1.6 

6 MESd,e 0.49 0.49 950 0 0.36 0.48 3.8 

7 phosphate 0.20 0.02 0 0.19  f  

8 phosphate 0.20 0.02 960 0.16  f  

a In H2O, pH 6.1 - 6.3.  All concentrations in mM.  b [Buffer] = 1 mM. c pH 7.0 d [Buffer] = 10 mM.  e In 
D2O. f Products are ethane and CH3SO2

-, see text. 

21 
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At the small concentrations of H2O2 and Fe(II) in the above experiments, the yields of 

organic products were too small to be quantified by NMR.  In the next set, the concentrations of 

both H2O2 and Fe(II) were raised to 0.49 mM and the products were analyzed by NMR.  After 

completion of the reaction in the presence of 190 mM (CH3)2SO, there remained 0.18 mM 

unreacted Fe(II) (entry 5).  At 950 mM (CH3)2SO, 0.36 mM  

Fe(II) was recovered (entry 6).  Both experiments generated large amounts of dimethyl sulfone, 

0.26 and 0.48 mM, respectively (Figures S4 and S5).  The dependence of (CH3)2SO2 yield on 

substrate concentration is evidence for the loss of oxidizing intermediate in competing side 

reaction(s) that do not involve substrate.  The competition is less favorable at pH ≥7, where the 

product yields are even lower.   

In contrast to these results, there was no indication of catalysis in phosphate buffers.  The 

reaction consumed close to stoichiometric amounts of H2O2 even at 1 M (CH3)2SO, entries 7-8, 

and produced methylsulfinate and ethane. 

Kinetics of Fe(II)-H2O2 reaction at pH 6-7.   

The experiments were performed under pseudo-first order conditions using either reagent 

in excess.  Kinetic traces (Figures S6-S8) were exponential and yielded pseudo-first order rate 

constants that exhibit linear dependence on the concentration of excess reagent, as shown in 

Figures S9-S11.  After correction for the stoichiometric factor of 2 (eq 1-2) in experiments with 

excess H2O2, one obtains a second order rate constant kFe = 650 (± 20) M-1s-1 at pH 6, and 5.9 (± 

0.2) × 103 M-1s-1 at pH 7.  Data obtained with excess Fe(II) were somewhat more scattered 

(Figure S11) but yielded a comparable value, kFe = 670 (± 70) M-1s-1 at pH 6 consistent with the 

2:1 [Fe(II)]/[H2O2] stoichiometry that was also obtained directly from the observed absorbance 

changes in these experiments.  For comparison, the rate constant in acidic solutions, determined 
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in this and earlier work40 is kFe = 58 M-1s-1, independent of pH in the range 3≥pH≥1.  Similar 

values have been reported by other groups, as summarized in ref. 22.  The kinetic data are 

summarized in Table 3.  Assuming that the reaction at pH 6-7 takes place by two parallel 

pathways, one involving Fe(H2O)6
2+ and the other, Fe(H2O)5OH+, see later, and taking pKa = 9.5 

for Fe(H2O)6
2+,41 one calculates the rate constant kFeOH = (1.8 ± 0.2) × 106 M-1 s-1 for the 

Fe(H2O)5OH+/H2O2 reaction, in reasonable agreement with previous studies22,42,43 which 

reported kFeOH in the range (0.4 - 6) × 106 M-1 s-1.   

Fe(II) + H2O2  → Fek
 Int  → fast ),II(Fe

 2 Fe(III)   (1) 

-dFe(II)]/2 dt = -d[H2O2]/dt = kFe[Fe(II)][H2O2]   (2) 

 

Table 3.  Effect of pH on the Kinetics of Fenton Reactiona 

pH 
kFe/M-1 s-1 b Source 

1-3 
58 Ref. 40 and this work 

6 
650 ± 20 This work 

6.2c (1.7 ± 0.1) × 103 This work 

7 
(5.9 ± 0.2) × 103 This work 

a 25.0 ± 0.1 0C. pH 6-7 maintained with non-coordinating 
buffers.  b As defined in eq 2.  c Phosphate buffer 

 

The next set of kinetic runs was performed in the presence of (CH3)2SO under catalytic 

conditions comparable to those in the top part of Table 2.  The rate constant for the loss of 

Fe(II), i. e. the catalyst, in MES buffer decreased with increasing concentrations of (CH3)2SO, as 

shown in Figure 3.  These kinetic data agree well with the increased stoichiometric ratios 

∆[H2O2]/∆[Fe(II)] at higher [(CH3)2SO] in Table 2.  Iron(II) has the opposite effect as shown by 
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increased product yields when Fe(II) was added slowly with a syringe pump, and points to Fe(II) 

as the species involved in depletion of the active catalytic intermediate. 

 

 

Figure 3.  Plot of kobs against [(CH3)2SO] (filled circles), and fit to eq 8 for the reaction of 0.020 
mM Fe(II) with excess H2O2, pH 6 (MES).  Open circles show Kinsim-simulated data. 

 

At pH 1, where the reaction involves •OH radicals and is not catalytic, the rate constant 

for the Fe(H2O)6
2+/H2O2 reaction, 58 M-1 s-1, remains independent of [(CH3)2SO].  Similarly, the 

concentration of (CH3)2SO plays a negligible role in phosphate buffer at pH 6 (k = 1.5 × 103 M-1 

s-1 in the absence of (CH3)2SO, Figures S12-S13, and 1.2 × 103 M-1 s-1 in 1 M (CH3)2SO) where 

the reaction is non-catalytic and appears to involve •OH radicals.  The nature of the Fe(II) 

reactant in phosphate buffers is not known, but at the low concentrations of both Fe(II) (0.02 

mM) and the buffer (<1 mM) the solutions appeared clear to the eye and exhibited no UV 

absorption that would indicate the presence of colloids.  The reaction yielded smooth, 
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exponential kinetic traces leading us to conclude that the reacting species is a single iron(II) 

phosphate complex.  Similar observations were reported  earlier for the growth of ESR signal of 

trapped hydroxyl radicals in the Fenton reaction at pH 7.4 in 20 mM phosphate buffer, where k = 

2 × 104 M-1 s-1.44 

The results presented above confirm that the dependence on [(CH3)2SO] is an inherent 

feature of the catalytic reaction, and show that the rate effects in Figure 3 are not caused by the 

formation of less reactive sulfoxide complexes of Fe(II).  Obviously, such complexes either do 

not form or do not significantly affect the reactivity of Fe(II) toward H2O2.   

All of the data at pH ≤ 7 are fully explained by the mechanism in eq 3-9. 

Fe(H2O)6
2+ ←→  (H2O)5FeIIOH+ + H+       pKa = 9.541 (3) 

Fe(H2O)6
2+ + H2O2  → − OH 2  (H2O)5Fe(H2O2)2+  →  (H2O)5FeIIIOH2+ + HO• (4) 

HO• + (CH3)2SO →  CH3SO2H + 0.5 C2H6 (via CH3
•) (5) 

HO• + Fe(H2O)6
2+  → − OH 2   (H2O)5FeIIIOH2+   (6) 

(H2O)5FeIIOH+ + H2O2  → − OH 2  (H2O)4Fe(OH)(H2O2)+  →  (HO)FeIVOn + H2O  (7) 

FeIVOn + (CH3)2SO →  Fe(II) + (CH3)2SO2   (8) 

FeIVOn + Fe(II) →  2Fe(III)  (9) 

Steps 3-6 describe the known reaction between Fe(H2O)6
2+ and H2O2 that involves •OH19 

and that continues to contribute at pH 6-7 where both reactants still exist predominantly in their 

acidic forms.  In addition, the small fraction of iron(II) is present as (H2O)5FeOH+ that reacts in a 
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new pathway in eq 7-8.  Critical for the observed mechanistic change is the greatly increased rate 

of Fe(II)/H2O2 reaction at higher pH such that even at pH 6, >90% of the reaction proceeds 

through the inverse [H+] path even though <0.1% of Fe(II) is present as (H2O)5FeOH+.  The 

value of k7 used in calculations was obtained by subtracting k4 (58 M-1s-1) from the measured 

value of kFe.   

Based on eq 3-9, the kinetics of disappearance of Fe(II) can be approximated as a sum of 

two kinetic processes associated with pathways in eq 4-6 and 7-9, which leads to the rate law in 

eq 10.  The fit in Figure 3 was obtained by fixing k4 (58 M-1s-1), k5 (7 × 109),15 k6 (3.2 × 108)15 

and k7 (592, see above) at their independently known values to obtain the ratio k8/k9 = 9 (±2) × 

10-5 at pH 6.  This ratio is one of the factors that determine the efficiency of the catalytic 

reaction.  At higher substrate concentration, reaction 8 is favored over reaction 9, thereby 

slowing the loss of Fe(II) in reaction 9 and increasing the number of catalytic turnovers.   

 

kobs = k4 (1+                                                ) + 2k7                                       (10) 

 

Clearly, the derived value of the ratio k8/k9 is only an approximation because eq 10 treats 

Fe(II) as a constant, i. e. [Fe(II)]av = 0.5 [Fe(II)]0, even though the actual concentration changes 

from (typically) 2 × 10-5 M to zero.  This simplified treatment is justified by the growing 

importance of reaction 4 as [Fe(II)] decreases and reaction 9 slows down which makes the 

kinetic traces appear as single exponentials despite the more complicated dependence on Fe(II) 

in eq 10.  The traces were simulated with Kinsim45 on the basis of the mechanism in eq 3-9.  The 

fits to exponential equation were excellent up to 5 half-lives and required k8/k9 = 1.7 × 10-4 to 

match the fitted data (open circles in Figure 3) with the experimental curve.  The agreement 

av

av

IIFekSOCHk

IIFek

)]([])[(

)]([

6235

6

+ av

av

IIFekSOCHk

IIFek

)]([])[(

)]([

9238

9

+



www.manaraa.com

       27 

between the experimentally estimated and Kinsim-derived value of k8/k9 to within a factor of two 

is good, although the simulated value is probably more accurate because no approximations were 

used to obtain it.   

Discussion 

The change from pH ≤3 to pH≥6 has the following effect on the Fenton reaction: (1) At 

the higher pH the kinetics exhibit inverse acid-dependence and become much faster than those in 

the pH-independent regime in acidic solutions.  (2) The products of sulfoxide oxidation change 

from those derived from hydroxyl radicals at acidic pH to sulfones at pH ≥6.  (3) The reaction at 

higher pH becomes catalytic in Fe(II).  (4) Catalysis is more efficient at high substrate and low 

Fe(II) concentrations.   

All of these findings lead to the conclusion that the mechanism of peroxo O-O bond 

cleavage, as outlined in Scheme 2, changes from homolytic to heterolytic at higher pH.  As a 

result of this mechanistic change, hydroxyl radicals are replaced by Fe(IV) as the Fenton 

intermediate, which is the key to the onset of catalysis at higher pH.  Similar proposals have been 

made earlier,22,30-32,34,35 but no evidence for Fe(IV) has been obtained until now.   

The switch from homolytic to heterolytic O-O bond cleavage is believed to be related to 

the changed thermodynamics of Fe(II)/Fe(III)/Fe(IV) chemistry.  Also, the removal of a proton 

from coordinated water and replacing (H2O)5Fe(H2O2)2+ (eq 4) with (H2O)4Fe(OH)(H2O2)+ (eq 

7) may play a critical kinetic role and activate the push-pull mechanism38 for the formation of an 

iron-oxo species, similar to the known heterolytic cleavage of metal hydroperoxo sites in 

enzymes,46,47 model complexes,48 and inorganic hydroperoxides25 such as (H2O)5CrOOH2+.49  
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Fe(H2O2)2+ FeOH2+ + HO

DMSO

MeSO2H

+

0.5 C2H6

DMSO

DMSO2

Fe(OH)+

(OH)Fe(H2O2)
+

Fe(IV)

+ H2O

DMSO

H2O2

Fe2+

H+

H2O2

 

Scheme 2. 

As we discussed earlier,38 the hydroperoxo-to-metal oxo conversion can be accomplished 

by formal proton transfer from coordinated H2O to -OOH, i. e. (H2O)M(OOH) → 

(OH)M(OOH2) (M = metal) in concert with two-electron intramolecular oxidation of the metal.  

In this picture, proton transfer is essential as it generates the hydroxo ligand to stabilize the 

emerging high oxidation state of the metal.  Simultaneous protonation of the hydroperoxide 

facilitates the O-O bond cleavage and departure of a molecule of water.  

All of the necessary elements for this mechanism38 are available to 

(H2O)4Fe(OH)(H2O2)+, which can be converted to Fe(IV) either directly as in eq 11, or via the 

isomeric hydroperoxide (H2O)5FeOOH+.  The ion (H2O)5Fe(H2O2)2+, on the other hand, lacks the 

essential basic site.  

(H2O)4Fe(OH)(H2O2)+ ←→  (H2O)4(HO)FeO+ + H2O  (11) 
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Absolute values of k8 and k9 for the competing reactions of Fe(IV) cannot be obtained 

from experimental data, but the ratio, ~ 10-4, is much smaller than that calculated for 

(H2O)5FeO2+ in acidic solutions, i. e. 2.9.50 Clearly, oxygen atom transfer is much less 

competitive at high pH, as one might expect for a strongly hydrolyzed oxidant.  The low 

reactivity of Fe(IV) toward sulfoxides relative to the competing decay process(es) is responsible 

for low product yields, such as those in Figure 1.  This finding may also explain the decrease in 

yields of oxidized products with increasing pH in related reactions involving iron and oxygen or 

hydrogen peroxide.22,30-32,34-36  The competing reduction of Fe(IV) by Fe(II) in eq 9, on the other 

hand, remains fast owing to the increased reducing power of Fe(II) at higher pH. In contrast to 

these observations, the kinetics of oxidation of a nonheme Fe(II) complex with H2O2 to yield a 

persistent Fe(IV) oxo species are slower at higher pH but the yields of Fe(IV) are greater.51  

The effect of phosphate is believed to reside in its affinity for Fe(II) and Fe(III).  The 

nature of the Fe(II) reactant in phosphate buffers is not known, but our observations suggest that 

it is a single iron(II) phosphate complex.  The change from FeII(H2O)5OH+ to FeII(H2O)n(P)m 

(where P = H2PO4
-, HPO4

2- or PO4
3-) apparently shifts the energetics of electron transfer back to 

one-electron path by stabilizing the trivalent product over Fe(IV).  Direct evidence for OH 

radicals were obtained by ESR in 20 mM phosphate buffer.44  

Conclusion 

The Fenton intermediate at near-neutral pH has now been identified as an Fe(IV) species 

that has the ability to oxidize (CH3)2SO to (CH3)2SO2.  The species at pH 6-7 is shorter-lived and 

appears to be substantially less reactive as oxidant than is the previously characterized 

(H2O)5FeO2+ at pH≤1.20,52   
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CHAPTER 3 

 

Fe(II) CATALYSIS IN OXIDATION OF HYDROCARBONS WITH OZONE IN 

ACETONITRILE 

 

Will be submitted to ACS catalysis journal 

 

Abstract 

 Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by sub-

millimolar concentrations of Fe(CH3CN)6
2+.  The catalyst provides both rate acceleration and 

greater selectivity toward the less oxidized product.  For example, Fe(CH3CN)6
2+-catalyzed 

oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%) whereas the 

uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid.  Similarly, 

aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl 

ether to a 1:1 mixture of ethanol and acetaldehyde.  The kinetics of oxidation of alcohols and 

diethyl ether are first order in Fe(CH3CN)6
2+ and ozone, and independent of [Substrate] at 

concentrations greater than ~5 mM.  In this regime, the rate constant for all of the alcohols is 

approximately the same, kcat = (8±1) × 104 M-1 s-1, and that for (C2H5)2O is (5±0.5) × 104 M-1 s-1.  

In the absence of substrate, Fe(CH3CN)6
2+ reacts with O3 with k5 = (9.3±0.3) × 104 M-1 s-1.  The 

similarity between the rate constants k5 and kcat strongly argues for Fe(CH3CN)6
2+/O3 reaction as 

rate determining in catalytic oxidation.  The active oxidant produced in Fe(CH3CN)6
2+/O3 

reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous 

solutions.  This assignment is supported by the similarity in kinetic isotope effects and relative 

reactivities of the two species toward substrates.   
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Introduction 

Previous studies from this group1,2 and others3,4 have established that the reaction of 

Fe(H2O)6
2+ with ozone generates an iron(IV) species best described as FeIV(H2O)5O2+ (hereafter 

FeaqO2+) on the basis of spectroscopic evidence, chemical reactivity and DFT calculations.1,2,5  

Oxidations with FeaqO2+ take place by oxygen atom transfer to e. g. sulfoxides and phosphines, 

and by hydride and hydrogen atom abstraction from C-H bonds.1  In reactions with alcohols, 

aldehydes and ethers the latter two mechanisms operate in parallel, Scheme 1.  The hydride path 

is catalytic as it generates Fe(H2O)6
2+ which can be reoxidized to FeaqO2+.  Overall, however, the 

catalytic efficiency is poor because of the loss of iron as Fe(H2O)6
3+ in the parallel one-electron 

(hydrogen atom transfer) path.   

FeIV
aqO2+ + CH3CH2OH

FeIII
aqOH2+ + CH3C HOH

FeII
aqOH+ + CH3CHO +H+

O3

H+

Fe(H2O)6
3+

Fe(H2O)6
2+

H+

 

Scheme 1 

In the reaction between Fe(H2O)6
2+ and H2O2 (Fenton reaction) the reactive intermediate 

changes from hydroxyl radicals in acidic solutions to an iron(IV) species at near neutral pH.6 

Such a major mechanistic change caused by a modest change in reaction conditions led us to 

consider the effect of other parameters, including solvent, on reactions involving solvento iron 

species in oxidation states 2+ to 4+.  Specifically, the much higher reduction potential of the 

Fe(III)/Fe(II) couple in acetonitrile7,8 as compared to that in water suggests that the preference 
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for two-electron pathways of a hypothetical iron(IV) species might be greater in acetonitrile.  To 

explore this possibility and its potential consequences for iron-catalyzed oxidations, we initiated 

a study of the reaction of Fe(CH3CN)6
2+ with O3 in acetonitrile in the presence of oxidizable 

substrates.9  The results are described herein.   

Experimental 

The following chemicals were obtained commercially and used as received: iron(II) 

perchlorate hydrate Fe(ClO4)2.xH2O (98%), deuterium oxide D2O (99.9 atom %D), 1,10-

phenanthroline (99+ %), benzyl alcohol anhydrous (99.8%), cyclobutanol (99+%) (all Aldrich), 

dimethyl sulfoxide (≥ 99.9%, A.C.S spectrophotometric grade) and cyclopentanol (99%) (both 

Sigma-Aldrich), 2-propanol (99.9% certified ACS), tetrahydrofuran (99.9% HPLC grade), and 

ethyl ether anhydrous (99.9% certified ACS) (all Fisher scientific), acetonitrile-d3 (99.8 atom % 

D) (Cambridge Isotope Laboratories, Inc), acetonitrile (low water content (~10 ppm) for HPLC, 

GC and spectrophotometry, Honeywell - Burdick & Jackson), 2-propanol-2-d1 (99.8 atom % D) 

and 2-propanol-d8 (99.9 atom % D) (both CDN Isotopes), benzyl-α,α-d2 alcohol (98 atom % D, 

ISOTEC).  Iron(II) bis(acetonitrile)bis(triflate) Fe(OTf)2(CH3CN)2 was synthesized according to 

a literature procedure.10  

In experiments designed to explore the effect of water on products and kinetics, anhydrous 

iron(II) triflate was used instead of hydrated iron(II) perchlorate.  Deuterated acetonitrile was 

dried over 4A molecular sieves until the HDO/H2O signal disappeared in the 1H NMR spectrum. 

 UV-Vis absorbance measurements and kinetic studies used a Shimadzu UV-3101 PC 

spectrophotometer and Olis RSM-1000 stopped-flow at 24.9 ± 0.1 °C. 1H NMR spectra were 

recorded with a 400 MHz Bruker DRX-400 or 600 MHz Bruker Avance III spectrometer at room 

temperature.  Waters GCT accurate mass time-of-flight mass spectrometer in positive EI mode 
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(70 EV) with a scan rate of 0.3 seconds per scan and a mass range of 10–200 Daltons was used 

to qualitatively detect some of the products.  Waters MassLynx 4.0 software was used to acquire 

and process GC-MS data.  Ozone was generated in an Ozonology L-100 ozone generator. 

Oxygen concentration was measured using Hanna Edge dissolved oxygen meter.  

Procedures  

 Stock solutions of iron(II) perchlorate in CH3CN or CD3CN were prepared fresh before 

each set of experiments and standardized with phenanthroline after dilution with H2O and using 

ε = 1.14 ×104 Μ−1 cm-1 for Fe(phen)3
2+ at 510 nm.  A correction was applied for the absorbance 

of iron(III)-phenanthroline as previously described.1  Ozone solutions were prepared by 

continuous bubbling of ozone through CH3CN or CD3CN for >5 min at room temperature and 

diluted to the desired concentration.  The concentration of ozone in stock solutions was typically 

5.6±0.1 mM as determined spectrophotometrically at 260 nm, ε260 = 3350 M-1 cm-1.  These 

solutions always contained residual oxygen, typically about 5.9 mM, as described below. 

To determine the amount of oxygen generated in the Fe(CH3CN)6
2+ /O3 reaction in the 

presence and absence of substrates, the reactants were mixed rapidly in an air-free, tightly sealed 

vial, leaving only minimal head space to avoid equilibration between the solution and gas phases.  

A sample (0.5-1.0 mL) was withdrawn and injected into another sealed vial containing a 

dissolved oxygen electrode immersed in 18 mL of air-free water.  The measurement was 

completed in about 40 seconds after injection.  The measured value was corrected for the 

concentration of residual oxygen, typically around 5.9 mM in ozone stock solutions as 

determined after removal of O3 with excess fumaric or maleic acid.11  The same procedure was 

used to determine the concentration of O2 in O2- saturated acetonitrile.  The value obtained, 11.3 

mM, is in acceptable agreement with the value reported for air-saturated acetonitrile, 2.42 mM.12   
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Except in experiments specifically designed to explore the effect of O2 on kinetics and 

products, solutions of iron(II) and substrates were prepared and handled anaerobically.  

However, since some O2 was present in stock solutions of ozone, see above, and since the 

Fe(CH3CN)6
2+ /O3 reaction itself produces O2, none of the reaction solutions were completely 

O2-free. 

Competition experiments   

A solution containing known concentrations of Fe(II) and two or three substrates were 

mixed with ozone in a UV cell.  After the disappearance of ozone at 260 nm, the products were 

quantified by 1H NMR.  In all of the experiments the substrate concentrations were sufficiently 

large to make the kinetics of each individual reaction fall into the plateau region of Figure 4.  

Product yields for benzyl alcohol, which absorbs too strongly in the UV for direct kinetic 

measurements, were shown independently to remain unchanged at [PhCH2OH]0 ≥4 mM.  Similar 

experiments were conducted on mixtures of protiated and fully or partially deuterated substrates 

to determine kinetic isotope effects.  Product yields derived from fully deuterated substrates 

(diethyl ether-d10 and 2-propanol-d8) were estimated as a difference between the total amount of 

products for the same competition observed with protiated compounds and the amount of 

product derived from the competing protiated substrate.   

Kinetic data were obtained by monitoring the disappearance of ozone at 260 nm 

(Shimadzu) or in the 260-280 nm spectral range (Olis RSM-1000 Rapid Scan).  In stopped flow 

experiments, a mixture of Fe(CH3CN)6
2+ and substrate was placed in one syringe, and ozone 

solution in the other.  Experiments designed to study the effect of [substrate] used 0.06-0.15 mM 

ozone, 0.025 mM Fe(CH3CN)6
2+ and 1-50 mM substrate.  The effect of [Fe(CH3CN)6

2+] was 

explored at 0.08-0.12 mM ozone, 0.005-0.1 mM Fe(CH3CN)6
2+ and 2-50 mM substrate.  
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Kinetic traces were fitted to an expression for first order kinetics with Kaleidagraph v4.0 

or with OLIS Global-Works v2.0.190.  1H NMR and GC-MS analyses were initiated within 5-15 

min after the completion of the reaction.  10% D2O (v/v) was added to some NMR solutions to 

shift the interfering water peak.  

Results 

The UV spectrum after completion of the reaction between 1.1 mM benzyl alcohol and 

0.22 mM ozone in acetonitrile exhibits a double feature in the 230-250 nm range, Figure 1, 

consistent with a mixture of benzaldehyde (λmax 244 nm) and benzoic acid (λmax 227 nm).  The 

individual spectra are shown in Fig S1.  This assignment was confirmed by 1H NMR, Figure S2.  

The reaction with ozone also produced hydrogen peroxide, as shown by 1H NMR signal at 8.56 

ppm.   

When the same reaction was conducted in the presence of 0.011 mM Fe(CH3CN)6
2+, 

benzaldehyde was the major product detected by UV (Fig 1), 1H NMR (Fig 2), and GC-MS.  

Small amounts of benzoic acid (~10%) were also observed, some of it possibly generated by 

oxidation of benzaldehyde with O2 during sample manipulation. The combined yield of PhCHO 

and PhCOOH, based on the initial ozone concentration, was 85%. 
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Figure 1.  UV spectra of the products of the reaction between (a) 1.1 mM PhCH2OH and 0.22 
mM O3, and (b) 1.1 mM PhCH2OH and 0.3 mM O3/0.011 mM Fe(CH3CN)6

2+.   
 

Fe(CH3CN)6
2+-catalyzed oxidation of cyclobutanol by O3 (1.8 mM) produced 1.55 mM 

cyclobutanone, Figure S3.  No ring-opened products were observed by either 1H NMR or GC-

MS, ruling out a significant contribution from a path involving cyclobutanol radicals.1 The latter 

are subject to rapid ring opening that ultimately yields an aldehyde(s).  At the end of the reaction, 

about 80% of iron was still present as Fe(II). 

Similarly, ethanol was oxidized to acetaldehyde, Figure S4, 2-propanol to acetone, and 

cyclopentanol to cyclopentanone. The results are summarized in Table 1.  Product yields varied 

from 70% (acetaldehyde) to 85% (cyclopentanone).  1H NMR of the products of ethanol 

oxidation exhibits additional signals at 8.03 and 4.64 ppm, consistent with small amounts of 

formic acid and acetal which are common overoxidation products of ethanol.13  The yields of 

these products increase somewhat with increasing [O3]/[EtOH] ratio.   
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Table 1.  Product Yields in Fe(CH3CN)6
2+-Catalyzed Oxidation of Alcohols, DMSO and Et2O 

by Ozone 
Substrate (mM) [O3]/m

M 
[Fe(CH3CN)6

2+]/mM Major Product % 
Yield 

dimethyl sulfoxide (9.6) 1.9 0.028 dimethyl sulfone 100 

diethyl ether (8.5) 1.2 0.052 (ethanol + acetaldehyde) 100 

cyclopentanol (9.8) 1.4 0.024 cyclopentanone 85 

cyclobutanol (9.6) 1.8 0.025 cyclobutanone 85 

2-propanol (32) 0.1 0.025 acetone 80 

ethanol (21.1) 0.83 0.055 acetaldehyde 70 

benzyl alcohol (10) 1.8 0.048 benzaldehyde 70 

 
The reaction with diethyl ether produced a 1:1 mixture of C2H5OH and CH3CHO in 

100% yield, Figure S5.  Dimethyl sulfoxide (DMSO) was oxidized to the sulfone, also in 100% 

yield, Figure S6.  At an initial Fe(CH3CN)6
2+ concentration of >0.020 mM, the majority (70-

90%) of iron was still present as Fe(II) at the end of the reactions listed in Table 1 provided the 

concentration of substrate exceeded ~5 mM.  At much lower initial concentrations of 

Fe(CH3CN)6
2+ and substrate, up to 40-60 % of Fe(CH3CN)6

2+ was oxidized to Fe(III).   

Fe(CH3CN)6
2+-catalyzed oxidation of THF by O3 yielded several products as shown by 

GC-MS and 1H NMR, Figures 2 and S7.  On the basis of mass spectra, the GC peak at 4.42 min 

is assigned to an equilibrated mixture14 of 2-hydroxytetrahydrofuran (2-OH-THF) and 4-

hydroxybutanal, and that at 6.18 min to γ-butyrolactone.  All three species were clearly identified 

and quantified by 1H NMR, Figure S7.  The combined yield is 75% (in 4:2:1 ratio, respectively).  

Also observed in the 1H NMR are small amounts of formic acid, similar to previous studies of 

THF oxidation.15  Several other small peaks were not identified.  The products eluting at 9-10 

min in Figure 2 are attributed to THF dimers and condensation products as deduced from mass 
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spectral data. These products are also formed upon electrochemical oxidation of THF in aqueous 

sulfuric acid.15   

 

 

Figure 2. Gas chromatogram of products obtained by oxidation of 5.6 mM THF by 1.35 mM 
O3/0.1 mM Fe(II).   
 

The overall picture of THF oxidation changes dramatically when an alcohol is added as 

co-substrate.  As shown on the example of THF/ benzyl alcohol mixture, Figures S8-S10, the 

products (>90%) are the acetal 2-OR-THF and aldehyde/ketone derived from the alcohol.  THF 

oxidation products, i.e. hydroxytetrahydrofuran/4-hydroxybutanal and γ-butyrolactone accounted 

for only 5% of products.   

In search of the source of 2-OR-THF we considered the known reaction16 between 

alcohols and 4-hydroxybutanal, the latter being one of THF oxidation products.  This reaction 

generates 2-OR-THF in the presence of an acid catalyst at 20-100o C,16 but is extremely slow 

(about 17 hours) under our experimental conditions.  Also, no new products were generated upon 

mixing alcohols with product solutions of Fe(CH3CN)6
2+/O3/THF reaction.  A slow overnight 
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reaction between alcohols and THF in the presence of Fe(CH3CN)6
2+ (0.5 mM) did produce 2-

OR-THF when the concentrations of alcohols (60 mM) and THF (80 mM) were about ten-fold 

higher than is typical in our work.  Clearly, the rapid (several seconds) formation of 2-OR-THF 

under our standard catalytic conditions utilizes a different path and must involve an 

intermediate(s) generated in the course of the Fe(CH3CN)6
2+/O3 oxidation of THF and/or 

alcohol.  Since close to 100% of iron was still present as Fe(II) at the end of the Fe(CH3CN)6
2+ 

/O3/ THF/alcohol it is clear that the products were either formed in a series of 2-e steps or that 

Fe(III), if involved, was re-reduced to Fe(II) by reaction intermediate(s).  

Kinetics  

Substrates (5-50 mM) were used in large excess over ozone (0.06-0.15 mM) and 

Fe(CH3CN)6
2+.  The loss of ozone was monitored at 260 nm.  Kinetic traces in the plateau 

region, see below, were exponential and yielded pseudo-first-order rate constants kobs.  

Ozone oxidation of organic substrates used in this work is slow but not negligible in 

comparison with the Fe(CH3CN)6
2+-catalyzed reaction.  The rate law for the disappearance of 

ozone is thus given by eq 1, where kcat represents the rate constant for the catalytic reaction of eq 

2, kO3 is the independently-determined rate constant for the direct O3/substrate reaction, Table 

S1, and S is substrate. The contribution from the direct reaction to kobs was typically <10%, but 

increased as substrate concentrations increased and Fe(II) concentrations decreased.  In the least 

favorable case (50 mM 2-PrOH at 0.025 mM Fe(II)), this contribution was 20%.  The use of 

higher concentrations of the catalyst, which would benefit the catalytic reaction, was not feasible 

because the reaction became too fast and signal-to-noise ratio poor.   

 -d[O3]/dt = kO3[O3][S] + kcat[O3] [Fe(CH3CN)6
2+]m [S]n = kobs [O3]  (1) 

 O3 + S  →[Fe(II)  Products  kcat  (2) 
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The experimentally determined kobs was corrected for the direct path to give kcorr, eq 3. 

 kcorr = kobs - kO3[S] = kcat [Fe(CH3CN)6
2+]m [S]n   (3) 

 The reaction is first order in [Fe(CH3CN)6
2+] (m = 1) as shown by linear dependence of 

kcorr on [Fe(CH3CN)6
2+] at two different concentrations of 2-PrOH in Figure 3.  First order 

dependence on [Fe(CH3CN)6
2+] holds for all of the substrates examined.  
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Figure 3.  Plot of kcorr vs concentration of Fe(CH3CN)6
2+ for the catalytic oxidation of 2-PrOH 

with ozone (0.08-0.12 mM.).  Concentrations of 2-PrOH are 2 mM (circles) and 50 mM 
(squares).  
 

The dependence on [2-PrOH], on the other hand, is quite modest as shown by the small 

difference in slopes of the two lines in Figure 3, i. e. 3.6 × 104 M-1s-1 and 7.7× 104 at [2-PrOH] = 

2 mM and 50 mM, respectively.  This general picture holds for other substrates as well as shown 

in Table S2 and illustrated by the plot of kcorr vs [Substrate] in Figure 4.   
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Figure 4.  Plot of kcorr against substrate concentration for Fe(CH3CN)6
2+-catalyzed oxidations 

with ozone of 2-propanol (circles), ethanol (half-filled squares), THF (squares), cyclobutanol 
(triangles) and diethyl ether (diamonds).  All experiments have [Fe(CH3CN)6

2+]0 = 0.025 mM, 
[O3] = 0.06-0.15 mM.  
 

After the sharp initial rise, the rate constants in Figure 4 reach an approximately constant 

value of 1.5 ± 0.2 s-1 for most substrates, and 1.1 s-1 for diethyl ether.  The initial concentration 

of Fe(CH3CN)6
2+ in these experiments was approximately constant at 0.025 ± 0.002 mM.  After 

the reaction, ~80% of Fe(CH3CN)6
2+ was recovered in the plateau region in Figure 4, but only 

about 50% in the rising portion at low substrate concentrations.  Also, the fit to exponential 

kinetics at low [substrate] was poor, and only the initial 50% of reaction was used to evaluate the 

rate constants.   

In the plateau region the reaction is clearly catalytic in Fe(CH3CN)6
2+ and the rate law is 

reasonably well approximated by eq 4 (i.e. n of eq 3 is zero), yielding kcat = kcorr/[Fe(CH3CN)6
2+] 

= (5±0.5) × 104 M-1 s-1 for Et2O and (8±1) × 104 M-1 s-1 for the remaining substrates.   

 -d[O3]/dt = d[Product]/dt = kcat[Fe(CH3CN)6
2+][O3] = kcorr [O3]    (4) 

The kinetic behavior of DMSO is qualitatively similar to that of alcohols and ethers, but 

the rate constant is much larger, reaching a saturation value of 39 ± 1 s-1 at 0.025 mM Fe(II), 
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Figure 5.  This result implies much greater reactivity of Fe(DMSO)n(CH3CN)6-n
2+ 

complex(es)17,18 compared to Fe(CH3CN)6
2+.  The support for Fe(DMSO)n(CH3CN)6-n

2+ in this 

work comes from the observation of broadened 1H NMR methyl resonances of DMSO in 

CD3CN in the presence of Fe(II), consistent with an exchange between free and complexed 

DMSO.  As expected, the signal sharpens upon addition of D2O (15%, v/v) which leads to 

dissociation of DMSO.  
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Figure 5.  Plot of kobs vs [DMSO] for the reaction with O3 (0.1 mM) / Fe(CH3CN)6
2+ (0.025 

mM).   
 

Kinetic measurements for the Fe(CH3CN)6
2+ /O3 reaction in the absence of substrates and 

with Fe(CH3CN)6
2+ in large excess yielded kobs = 20 s-1 at [Fe(CH3CN)6

2+]0 = 0.21 mM, and 29 s-

1 at [Fe(CH3CN)6
2+]0 = 0.30 mM, which results in kFe = (9.3±0.3) ×104 M-1 s-1, eq 5.  The 

similarity between the rate constants k5 and kcat strongly argues that they apply to the same 

reaction, i. e. formation of an intermediate, presumably FeIV(CH3CN)5O2+ (hereafter FeIV
ANO2+), 

see later, or a related species in analogy with FeIV
aqO2+ that is produced in Fe(H2O)6

2+/O3 

reaction in acidic aqueous solutions. 1 In this scenario, FeIV
ANO2+ rapidly oxidizes substrates as 

in eq 6, thereby regenerating Fe(CH3CN)6
2+ which re-enters eq 5.   
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Fe(CH3CN)6
2+ + O3 → FeIV(CH3CN)5O2+ + O2 + CH3CN kFe  (5)  

FeIV(CH3CN)5O2+ + (C2H5)2O  → fast ,CNCH3  Fe(CH3CN)6
2+ + {C2H5OH + CH3CHO}  (6) 

Runs with excess ozone exhibited a rapid initial step followed by slower disappearance of 

large, nonstoichiometric amounts of ozone in a reaction apparently catalyzed by iron.  The fast 

initial step took place on a time scale appropriate for kFe that was determined with excess 

Fe(CH3CN)6
2+, but a reliable rate constant could not be extracted under these conditions.   

In several experiments the concentration of O2 was determined at the end of reaction with 

use of a dissolved oxygen electrode as described in Experimental.  Under standard catalytic 

conditions (0.050 mM Fe(CH3CN)6
2+, 0.8 mM O3, 20 mM substrate), the reactions with DMSO 

and with (C2H5)2O generated 0.9 equivalents of O2 per O3, Table S3.  This result, combined with 

quantitative product yields in Table 1, leads to the approximate stoichiometry in eq 7.  

O3 + (C2H5)2O (or Me2SO)   → )II(Fe  {CH3CHO + C2H5OH} (or Me2SO2) + O2  (7) 

For the remaining substrates in Table 1, the net increase in O2 content was lower, typically 0.6 

equivalents per O3, suggesting some O2 consumption in parallel 1-e processes, see later.  When 

no substrates were added, the increase in O2 was only about 0.2 equivalents per mole of O3 

regardless of whether Fe(CH3CN)6
2+ was used in catalytic amounts or in concentrations 

comparable to those of O3 (~ 0.8 mM).  In both cases ozone was consumed completely, although 

at low iron concentrations the reaction took about 15 minutes, much longer than in the presence 

of added substrates.  Given that O3 persists in acetonitrile for hours in the absence of 

Fe(CH3CN)6
2+, it is clear that Fe(CH3CN)6

2+/acetonitrile combination leads to catalytic O3 

consumption.  Clearly, acetonitrile is less reactive than the substrates in Table 1.  Moreover, 

small amounts of Fe(CH3CN)6
2+ remained after completion of the reaction even when ozone was 

used in excess.  In experiments with equimolar amounts of Fe(CH3CN)6
2+ and O3, about 60% of 
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Fe(II) remained after completion of the reaction in CH3CN, but only traces (<5%) in CD3CN 

demonstrating a large solvent kie.  Unfortunately, no oxidation products of CH3CN could be 

detected by 1H NMR or GC-MS owing to the interference by the large solvent peaks.  No 

formaldehyde was detected with chromotropic acid.  

Effect of Fe(III), O2 and water   

There is a mild increase in product yields under oxygen-rich conditions, as shown for 

ethanol in Table 2.  At approximately constant concentrations of Fe(CH3CN)6
2+, O3, and EtOH, 

an increase in oxygen concentration from 1 mM to 7 mM led to an increase in acetaldehyde yield 

from 82% to 94%, and an increase in the recovery of Fe(CH3CN)6
2+ from 91% to 98%.  Oxygen 

also appears to have a mild inhibiting effect on the kinetics.  The rate constant in the presence of 

excess O2 (≥1.3 mM) is about 15% smaller than that obtained in the experiments that had only a 

small background concentration of O2 (ca 0.2 mM, comparable to that of ozone).   

Externally added Fe(ClO4)3 also improved product yields.  As shown in the last entry in Table 2, 

the yields of acetaldehyde become quantitative in the presence of 0.24 mM Fe(III).  

Up to 100 mM of added water has no effect on product yields or catalyst recovery as shown for 

ethanol and 2-propanol in Table 3, but the rate constant shows a small systematic increase with 

increasing [H2O].  At larger concentrations of H2O, product yields and catalyst recovery both 

decrease and the rate constant increases.  All catalytic activity ceases when water content reaches 

3% (~1.5 M).  The presence of water in the coordination sphere of iron and in the solvent 

apparently changes the Fe(III)/Fe(II) potentials to an extent sufficient to restore the chemistry to 

that characteristic of aqueous solution.1 
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Table 2. Effect of Fe(III) and O2 on Ethanol Oxidationa 

[O2]/ mM [Fe(III)]0 
/mM 

%[CH3CHO]∞
b  

 
% [Fe(II)]∞

c  

1  82 91 

1d  82 93 

7  94 98 

1 0.052 85 105 

1 0.24 100 130 

a [Fe(CH3CN)6
2+]0 = 0.047-0.060 mM, [O3] = 0.93-1.0 mM, [C2H5OH] = 43-55 mM. b Percent 

yield of CH3CHO. c Percent of Fe(II) recovered at the end of reaction. d Added [H2O] = 56 mM. 
 

Table 3.  Effect of H2O on the Kinetics and Catalyst Recoverya  

[O3]/ mM Substrate Added [H2O]/ 
mM 

kcorr/s-1 % [Fe(II)]∞
b 

0.054 2-propanol 0 1.7 96 

0.064 2-propanol 50 2.0 92 

0.056 2-propanol 99 2.6 96 

0.050 2-propanol 198 3.0 80 

0.072 ethanol 0 1.4 92 

0.063 ethanol 149 2.3 76 

0.060 ethanol 489 4.4 64 

a Conditions: [Substrate] = 20 mM, [Fe(CH3CN)6
2+]0 = 0.025 mM.  

 

Competition Experiments.  

 To gain some insight into the reactivity of the catalytic intermediate, presumed to be 

FeIV
ANO2+, competition experiments were performed with several substrates, see Experimental.  

The results (Figures S11-S16) are summarized in Table 4.  The ratios of rate constants k1/k2 for 
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various substrates were calculated from the expression k1/k2 = [P1][S2]/[P2][S1], where S1 and S2 

are two competing substrates, and P1 and P2 their respective products.  In the experiment with 

three competing substrates the listed ratios are [P1][S2]/[P2][S1] and [P2][S3]/[P3][S2], where S3 

and P3 stand for (CH3)2CHOH and (CH3)2CO, respectively,.   

Table 4.  Results of Competition Experimentsa  
O3 /mM Substrate (mM) Product (mM) k1/k2 

b 

0.66 benzyl alcohol (4.9) + 

ethanol (19)  

benzaldehyde (0.27) +  

acetaldehyde (0.25) 

4.2 

0.73 benzyl alcohol (4.9) + 

cyclobutanol (10) 

benzaldehyde (0.29) + 

cyclobutanone (0.31) 

1.9 

1.7 cyclobutanol (10) + 

ethanol (30) 

cyclobutanone (0.62) + 

acetaldehyde (0.76) 

2.4 

0.86 cyclobutanol (10) + 

2-propanol (11)  

cyclobutanone (0.40) + 

acetone (0.34)  

1.3 

1.0 benzyl alcohol (4.7) + 

ethanol (10) +  

2-propanol (9.6) 

benzaldehyde (0.32) + 

acetaldehyde (0.18) + 

acetone (0.32) 

3.8, 0.54c 

1.1 benzyl alcohol (4.8) + 

diethyl ether (4.7) 

benzaldehyde (0.49) +  

acetaldehyde / ethanol (0.37)  

1.3 

a[Fe(CH3CN)6] = 0.05 – 0.06 mM.  b Ratio of rate constants for competing substrates S1 and S2 in 
the order listed in each set.  c Ratio of rate constants for ethanol and 2-propanol.   
 
All of the rate constants were normalized to kEtOH = 1.0 in Table 5.  Similar experiments with 

deuterated substrates (Figures S17-S21) yielded the results in Table 6 from which kinetic isotope 

effects in Table 7 were calculated.   
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Table 5. Relative Rate Constants for Oxidations with FeIV
ANO2+  

Substrate Average krel kH2O/M-1s-1a 

ethanol [1.0] 2.51 × 103  

2-propanol 2.0 3.22 × 103  

cyclobutanol 2.2  3.13 × 103 

diethyl ether 3.1 4.74 × 103  

benzyl alcohol 4.0 14.2 × 103 

a Directly measured rate constants for reactions of Fe(H2O)5O2+ in 0.1 M aqueous HClO4  

Table 6.  Products Obtained in Competition Between Protiated and Deuterated Substratesa  
O3 /mM Substrate (mM) Product (mM) 

1.15 diethyl ether-d10 (5.6) acetaldehyde / ethanol (0.20)b 

 benzyl alcohol (4.8) benzaldehyde (0.66) 

1.1 ethanol (16.6) acetaldehyde (0.53) 

 benzyl alcohol-d2 (4.7) benzaldehyde (0.18) 

0.85 2-propanol-d1 (10.1) acetone (0.19) 

 benzyl alcohol (4.8) benzaldehyde (0.46) 

1.39 cyclobutanol (9.7) cyclobutanone (0.81) 

 benzyl alcohol-d2 (9.1) benzaldehyde (0.34) 

1 2-propanol-d8 (10.3) acetone (0.22)b 

 benzyl alcohol (4.8) benzaldehyde (0.54) 

a By 1H NMR.  b Estimated from experimentally determined amount of PhCHO and assuming a 
75% cumulative yield of all products (as found with protiated substrates).  
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Table 7.  Kinetic Isotope Effects for Reactions of FeIV
ANO2+ 

Substrate kH/kD 

diethyl ether (d10) 2.3 

benzyl alcohol (d2) 3.8 

2-propanol (d1, d8) 2.5 

 

Discussion 

The oxidation of alcohols, ethers and sulfoxides by ozone in acetonitrile is catalyzed by 

Fe(CH3CN)6
2+.  The concentrations of Fe(CH3CN)6

2+ as low as 0.02 mM are sufficient for the 

catalytic reaction to dominate over the uncatalyzed O3/substrate reaction at substrate 

concentrations lower than about 50 mM.  The catalyst not only provides rate acceleration, but 

also increases the selectivity toward the less oxidized product.  This is illustrated in Figure 1 and 

Figure S2 on the example of benzyl alcohol which is oxidized to benzaldehyde in the 

Fe(CH3CN)6
2+-catalyzed path, and to a 1:1 mixture of benzaldehyde and benzoic acid in direct 

oxidation with ozone.  

Saturation kinetics are observed at [substrate] >5 mM (Figure 4). The rate constants reach 

an approximate limit of kcat = (8±1) × 104 M-1 s-1 for all of the substrates except diethyl ether 

which reacts somewhat more slowly, kcat = (5±0.5) × 104 M-1 s-1.  The observed variations in kcat 

can be rationalized by variations in Fe(II)-substrate binding constants and perhaps different 

contributions from 1-e and 2-e paths, see later.  The role of substrate binding is clearly seen in 

the reaction with DMSO which interacts strongly with Fe(CH3CN)6
2+ and reaches kcat = 1.5 × 106 

M-1 s-1, Figure 5.  
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As the concentration of substrate drops below 5 mM, the rate constant decreases sharply, 

Figure 4.  In this regime up to 50% of iron is oxidized to Fe(III) in the course of the reaction 

resulting in slower kinetics.  Side reactions of Fe(IV) with Fe(CH3CN)6
2+ and with the solvent, 

see later, are also most severe at low substrate concentrations, which further reduces the 

efficiency of the catalytic reaction.  The remainder of the discussion will focus on the saturation 

regime.  

Most efficient are the oxidations of diethyl ether and dimethyl sulfoxide.  Both generate 

quantitative yields of 2-electron oxidation products, Figures S5 and S6, with only small losses 

(≤20%) of the catalyst over 20-70 catalytic cycles, Table 1.  These data are most easily explained 

by a single-step two-electron oxidation of substrates by FeIV
ANO2+, eq 6, followed by 

regeneration of FeIV
ANO2+ in reaction 5.   

Product yields are somewhat lower, 70-85%, in the reactions with alcohols, Table 1.  We 

attribute these results to a contribution from a one-electron path of eq 7 which leads to oxygen 

radicals (HO•/O•-, O3
•-, O2

•- and others) known to be involved in chain decomposition of O3 in 

aqueous solutions.19-24  Some of the key reactions believed responsible for the loss of O3 in this 

work are shown in eq 8 - 18, written in analogy with the chemistry in aqueous solutions and in 

the gas phase and supported by the limited information on the reactivity of ozone and oxygen 

radicals in non-aqueous solvents.25-30  

 FeIV
ANO2+ + RCH2OH → Fe(III) + RC•HOH     (7)  

 RC•HOH + O2 → RCH(OH)OO•       (8) 

 RCH(OH)OO• → RCHO + HO2
•/O2

•-      (9) 

 2RCH(OH)OO• →→ 2 RCHO + O2 + H2O2  → )IV(Fe  HO2
• + Fe(III) (10) 

 RC•HOH + O3 → → RC(O)OH + HO2
•/O2

•-     (11) 
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 HO2
• ←→  O2

•- + H+        (12) 

 O2
•- + Fe(III) → O2 + Fe(II)        (13) 

 O2
•- + O3 → O2 + O3

•-        (14) 

 O3
•- ←→ O•- + O2        (15) 

 O•- + H+ ←→  HO•         (16) 

 (HO•, O3
•-, O•-) + CH3CN (+ O2, O3) → Products     (17) 

 (HO•, O3
•-, O•-) + RCH2OH → RCH•OH + (O2, H2O, HO-)    (18) 

 

Hydroxyalkyl radicals generated in eq 7 react with both O2 (eq 8) and O3 (eq 11) and 

produce superoxide, a powerful reductant and nucleophile in acetonitrile.30  The reduction of 

Fe(III) by O2
•-,24 eq 13, is the key step that regenerates Fe(II).  The competing reaction between 

O3 and O2
•-,31 the latter a well recognized chain carrier in the decomposition of ozone,23,32 

generates O3
•- followed by dissociation33 to give O•-, eq 14-15. The latter may be protonated (pKa 

of HO• in H2O = 11.9)34 if sufficient amount of water is present in the solvent, but protonation is 

not required for the next step since both HO• and O•- will oxidize the solvent and/or substrate by 

hydrogen atom abstraction,33 eq 17 and 18.  Even though the rate constant for the reaction of HO• 

with acetonitrile is smaller (k = 1.0 × 106 M-1 s-1 in acetonitrile)35 than the rate constants for the 

reactions with alcohols (e. g. kEtOH = 8.3 × 107 M-1 s-1),26 the concentration advantage makes the 

reaction with CH3CN about 5-10 fold faster at 20-50 mM ethanol that is typical in this work.  

Presumably, other radicals in eq 17-18 exhibit similar reactivity pattern and together with HO• 
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lead to a loss of oxidizing equivalents and less than quantitative yields of substrate-derived 

products.  Reaction 18 regenerates RC•HOH which reenters the scheme.   

According to the above mechanism, the beneficial effect of added Fe(III) arises mainly 

from its efficient scavenging of O2
•- in eq 13.24  This step both regenerates the catalyst and 

minimizes the importance of reactions 14-17 which lead to the loss of O3.   

Increased product yields and somewhat slower kinetics of O3 loss under O2-rich 

conditions are also consistent with known reactivity of radicals with O3 and O2.  At high [O2], 

most of the radicals react with O2 as in eq 8, followed by reactions 9-10 and 12-18.  In the 

absence of externally added O2, the concentrations of O2 and O3 are comparable (see 

Experimental), and reaction 11 becomes competitive with reaction 8 which increases the rate of 

ozone consumption and the yields of doubly oxidized products.36  Moreover, alkylperoxyl 

radicals produced in eq 8 also react with O3 to generate alkoxyl radicals RCH(OH)O•, eq 19, 

followed by rearrangement and/or further reactions with O2, O3 and substrates.37,38 

 RCH(OH)OO• + O3  →− 2O  RCH(OH)O•  → substrate ,O ,O 32  products  (19) 

In agreement with the above scheme, the concentration of O2 found after completion of 

the reactions with alcohols is significantly smaller than one would calculate by adding the 

amount produced from ozone in reaction 5 to the [O2] initially present.  Clearly, some O2 is 

consumed in the course of alcohol oxidation.  On the other hand, the concentration of O2 found 

after the oxidation of DMSO and (C2H5)2O is close to that calculated, supporting the notion that 

1-e oxidation of these substrates is negligible.  DMSO is probably oxidized by OAT, similar to 

the reaction in water.1  Quantitative product yields and measurable hydrogen kie for diethyl ether 

suggests hydride transfer.1  
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 The induction period observed in the O3/substrate reaction when iron is initially present 

as Fe(III) is most easily explained by the need to reduce Fe(III) to Fe(II), presumably through a 

scheme involving one-electron reduction of O3 by the substrate19,39 followed by eq 15-18.  The 

complex, multistep chemistry in eq 17-18 is envisioned to generate some O2
•- which reduces 

Fe(III) to Fe(II) and thus leads to the production of FeIV
ANO2+ via reaction 5.   

The disappearance of ozone in the presence of catalytic amounts of Fe(CH3CN)6
2+ in 

acetonitrile even in the absence of more reducing substrates shows that the solvent itself can be 

catalytically oxidized.  It is not clear whether FeIV
ANO2+ oxidizes CH3CN in 1-e or 2-e steps.  

Measurable amounts of Fe(CH3CN)6
2+ found in such solutions after all of O3 disappeared 

support a 2-e catalytic reaction that might take place by oxygen atom transfer or hydride transfer.  

On the other hand, as shown above in the reaction with alcohols, 1-e chemistry can also bring 

about the disappearance of ozone and formation of Fe(CH3CN)6
2+.  In support of the one-

electron route we note that aqueous ferryl(IV) reacts with CH3CN by hydrogen abstraction and 

does not regenerate Feaq
2+.1 Also, the much smaller amount of recovered Fe(II) after completion 

of Fe(II)/O3 reaction in CD3CN indicates a large solvent isotope effect, again consistent with 

HAT, although hydride abstraction cannot be entirely ruled out.  

Throughout this discussion it has been assumed that the reaction intermediate is an 

Fe(IV) species, FeIV
ANO2+, although so far we have not been able to observe or characterize it 

spectroscopically.  The relative reactivity toward the substrates in Table 5 appears consistent 

with this assignment in that the trend in acetonitrile follows closely that observed for FeaqO2+ in 

aqueous solutions.  In that work it was possible to carry out direct kinetic measurements of 

substrate oxidation by pre-formed FeaqO2+.  As shown in Table 5, benzyl alcohol is the most 

reactive among alcohols in both solvents, but the yield of 2-e oxidation product in acetonitrile is 
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among the lowest. This result may suggest a significant contribution from the 1-e path. 

Alternatively, the reaction may involve an attack by FeIV
ANO2+ at the benzene ring to generate 

multiple products, similar to the reaction of O3 with PhCH2OH,40 or reactions of other Fe(IV)-

oxo complexes with aromatic compounds.41,42  

The kinetic isotope effect for the reaction with 2-propanol is also similar in the two 

solvents. The value of kH/kD for the methine C-H is 2.5 in acetonitrile (Table 7) and 2.1 in H2O,1 

consistent with hydride transfer proposed previously.  These results however do not rigorously 

rule out other potential oxidizing intermediates, such as an ozonide or Fe(III)-(CH2CN) radical 

that may also react by hydride or hydrogen atom transfer.   

Conclusions 

Perchlorate and trifluoromethane sulfonate salts of iron(II) efficiently catalyze oxidation 

of alcohols and ethers with ozone in acetonitrile.  This result stands in stark contrast with that 

obtained in acidic aqueous solutions where, under comparable conditions, all of Fe(H2O)6
2+ is 

quickly oxidized to the unreactive Fe(H2O)6
3+.  The difference between the two solvents can be 

rationalized by changes in redox thermodynamics of iron and acid-base chemistry of superoxide 

radical, HO2
•/O2

•-.   

In both solvents the reaction between the substrate and active oxidant, an iron(IV) 

species, takes place in parallel one-electron (hydrogen-atom abstraction) and two-electron 

(hydride transfer) paths.  The two-electron path is much more prominent in acetonitrile, 

presumably because it avoids the strongly oxidizing Fe(III) (E = 1.6 V vs. NHE).8  This path 

regenerates the active catalyst, Fe(CH3CN)6
2+, directly.  The parallel hydrogen atom transfer 

produces carbon radicals and Fe(III).  The ensuing chemistry in the presence of O2 generates 

superoxide O2
•- (E0 (O2/O2

•-) = -0.80 V vs. NHE)30 which rapidly reduces Fe(III) to Fe(II).  This 
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step both regenerates the catalyst and removes O2
•-, the key intermediate involved in chain 

decomposition of ozone.   

The two paths are of comparable importance in acidic aqueous solutions1 so that a 

substantial portion of Fe(H2O)6
2+ is oxidized to Fe(H2O)6

3+ in a single cycle.  Similar to the 

reaction in acetonitrile, the follow-up chemistry generates superoxide.  However, under acidic 

conditions the superoxide is protonated (pKa (HO2
•/ O2

•-) = 4.69)30 and incapable of reducing 

Fe(H2O)6
3+.  One-electron path in aqueous solution thus leads to irreversible removal of the 

catalyst.   
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CHAPTER 4 

 

ELECTRON TRANSFER REACTIVITY OF AQUEOUS IRON(IV) OXO COMPLEX 

 

A manuscript in preparation 

 

Abstract 

The reactivity of Feaq
IVO2+, generated in the reaction of Feaq

2+ and ozone at pH 1, toward 

various inorganic complexes and some organic substrates, including ferrocene derivatives, Ni(II) 

macrocyclic tetraamines complexes, polypyridyl complexes of Os(II), Fe(II) and Ru(II), 

phenothiazines, HABTS-, Na3IrCl6, CoII(dmgBF2)2 and Ce(ClO4)3 with reduction potentials 

ranging from 0.52 to 1.7 V has been studied at room temperature.  All substrates have shown to 

react with Feaq
IVO2+ quantitatively producing the 1e oxidation product except for the 

phenothiazines and polypyridyl complexes of Fe(II) and Ru(II).  Phenothiazines reacted through 

oxygen atom transfer to produce sulfoxides while the reactions with polypyridyl complexes of 

Fe(II) and Ru(II) were complicated and showed no Fe(III) or Ru(III) formation. The obtained 

second order rate constants of these reactions are within 104 – 108 M-1 s-1 with no straightforward 

relation to reduction potentials. Among all the substrates, Os(phen)3
2+ seems to react through 

outer-sphere ET. In addition, the no dependence of Os(phen)3
2+ reactivity on acid concentration 

(0.05 – 0.2 M) indicates no prior protonation of the Feaq
IVO2+, which is consistent with stepwise 

electron-transfer followed by proton transfer. Our results suggest that the Feaq
IVO2+/Feaq

IIIO+ 

potential is not much lower than that for Os(phen)3
3+/ Os(phen)3

2+ couple (0.84 V vs. NHE). 
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Introduction 

In the last few years, the chemistry of high-valent iron oxo complexes have attracted 

considerable attention and many efforts have been made to understand their role in several 

enzymatic systems by carrying out oxidation reactions with wide range of organic substrates.1-5  

A number of iron(IV) complexes bearing stabilizing ligands have been synthesized and 

characterized by various spectroscopic methods and X-ray crystallography in attempts to unravel 

and mimic the chemistry of both heme and non-heme iron centers in enzyme active sites.6-10 

Many reports have shown how powerful oxidants are these iron(IV) oxo model complexes and 

how efficiently  and selectively they can catalytically oxidize C-H bonds of many organic 

substrates.8,10-17 In addition, the electron-transfer properties of some high-valent metal oxo 

complexes, including iron(IV), have been studied with some inorganic electron donors in 

attempts to give more insight about their reactions mechanism and oxidation power.18-21 The one-

electron reduction potential for some of the synthesized Fe(IV)-oxo complexes have been 

examined and reported to have values ranging from ~0.2 to 1.0 V vs. NHE.19,22 

On the other hand, aqua iron(IV)-oxo complexes are generated in the reaction between 

aqueous Fe(II) and oxygen-atom donors, such as H2O2 and O3.23 However, their fast decay and 

sensitivity to the chemical environment make it hard to fully explore their chemistry. For 

example, an iron(IV) aqua complex was previously reported as one of the active intermediates, 

along with OH radical, in Fenton reaction (reaction of Feaq
2+ and H2O2), and recently we have 

shown that the reactive intermediate changes from hydroxyl radicals in acidic solutions to an 

iron(IV) species at near neutral pH.24 However, the generation of Fe(IV) species at  near neutral 

pH was sensitive to the presence of coordinating ligands such as phosphate. In addition, the fast 

decay of Fe(IV) and the rapid reaction with Fe(II) at neutral pH made it hard to fully characterize 
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this species or study its reactivity, since this would require the use of very reactive substrates or 

high substrate concentrations which would interfere with the chemistry producing Fe(IV) and our 

ability to detect it.    

 The Fe(IV)-oxo complex formed in the reaction between Feaq
2+ and ozone has been 

reported to have a lifetime of 10 seconds at pH 1 at room temperature, which provided a window 

to characterize and study the reactivity of this iron(IV) species.25-27 A few reports have shown 

that the aqueous iron(IV) is capable of oxidizing a wide range of organic substrates effectively 

and selectively.26,28,29 However, the redox-chemistry of the aqueous Fe(IV) species and its 

electron-transfer properties remain largely unexplored with only very few reports about its 

reaction with inorganic substrates. One of the reports has shown that Fe(IV) generated in Fenton 

reaction can oxidize As(III) to As(IV).30 In addition, Jacobson et al have examined the reactivity 

of the aqueous Fe(IV)-oxo species with few inorganic substrates and reported a lower limit for 

the standard one electron reduction potential for the FeaqO2+ / Feaq
3+ couple of Eo(FeaqO2+ / 

Feaq
3+)  ≥ 0.87 V vs. NHE.26 The one-electron reduction potential for Feaq

IV/III is still unavailable 

and the fact that the aqueous FeaqO2+ can react in two parallel 1e and 2-e pathways28 or the 

possibility that it might attack the coordinated ligands, when reacting with metal complexes, 

instead of the metal would make it very difficult to get a precise value on the one-electron 

potential for Feaq
IV/III. In addition, the FeaqO2+ decays within 10 seconds at pH 1 through 

oxidizing water, which would make it difficult to establish steady equilibrium between the 

FeaqO2+ / Feaq
3+ couple and electron donors.  

More to add, previous reports have shown that the oxidation power of synthesized 

Fe(IV)-oxo complexes enhanced in the presence of Lewis or BrØnsted acids, especially in 

organic solvents like acetonitrile, and an increase up to ~0.8 V in the reduction potential was 
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observed for some synthetic Fe(IV)-oxo complexes bearing tetradentate N4 ligands.16,31-33 The 

protonation of or the binding of a metal ion Lewis acid like Sc3+ to the Fe(IV)-oxo unit has 

shown to cause weakening or elongation of the FeIV=O bond lowering the reorganization energy 

which would remarkably enhance the electron-transfer reactivity of the Fe(IV)-oxo complexes.19 

Aqueous Feaq
IVO2+ is expected to behave similarly and to proceed through proton-coupled 

electron-transfer (PCET)34,35 rather than simple electron-transfer (ET) since the latter would form 

Feaq
IIIO+ complex rather than the stable hydroxyl-Fe(III) (see Scheme 1). 

 

Scheme 1. Proton-coupled electron-transfer (PCET) path vs. electron-transfer (ET). 

 

In this work, we further explore the chemistry of FeaqO2+, reporting its reactivity with 

various inorganic complexes, in attempts to give more insight about its electron-transfer 

characteristics and oxidation power.  

Experimental 

Materials 

Most of the chemicals used were of analytical or reagent grade and were used as received 

from the suppliers. Iron(II) perchlorate hydrate (Fe(ClO4)2.xH2O) (98%), ferrocenecarboxylic 

acid (Fe(Cp)(C5H4COOH)) (97%), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

diammonium salt (ABTS) C18H18N4O6S4.2NH4  (~98%), sodium hexachloroiridate(III) hydrate 

(Na3IrCl6.xH2O),  trifluoperazine dihydrochloride (TFP) C21H24F3N3S.2HCl  >99% and tris(2,2′-
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bipyridyl)dichlororuthenium(II) hexahydrate (Ru(bpy)3Cl2.6H2O) (Sigma-Aldrich), perchloric 

acid (HClO4) (70 wt%) (Fisher), 1,1'- ferrocenedicarboxylic acid (Fe(C5H4COOH)2) (98%) (Alfa 

Aesar), hydroxymethyl ferrocene (Fe(Cp)(C5H4CH2OH)) (99%) and cerium(III) perchlorate 

hexahydrate (Ce(ClO4)3.6H2O) (Strem), chlorpromazine hydrochloride (CPZ) C17H19ClN2S.HCl 

(99.9%) (Fluka). Tris(1,10-phenanthroline)osmium(II) triflate (Os(phen)3(CF3SO3)2) was a gift 

from Dr. Stanbury. The compounds bis(dimethylglyoximato)cobalt(II) ((H2O)2Co(dmgBF2)2)36, 

Nickel(II) cyclam37 (Ni(cyclam)(ClO4)2) (cyclam = 1,4,8,11-tetraazacyclotetradecane), 

(Ni(hmc)(ClO4)2)38 (hmc = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), 

tris(5,6-dimethyl-1,10-phenanthroline)ruthenium(II) chloride39 (Ru(5,6-Me2phen)3Cl2), and 

tris(4,7-dimethyl-1,10-phenanthroline)ruthenium(II) perchlorate39 (Ru(4,7-Me2phen)3(ClO4)2) 

were prepared according to literature procedures.  Solutions of tris(1,10-phenanthroline)iron(II)  

perchlorate (Fe(phen)3(ClO4)2) were prepared by mixing aqueous solutions of iron(II) 

perchlorate with three equivalents of 1,10-phenanthroline.  Ozone was generated with 

Ozonology L-100 ozone generator.  Water was purified by passage through a Barnstead Easy 

Pure II -UV/UF ultrapure water purification system. 

UV-Vis spectra and kinetic studies were carried out with a Shimadzu UV-3101 PC 

spectrophotometer and Applied Photophysics (APP) sequential stopped-flow DX-18MV at 

25.0±0.20 C. Kinetic traces were fitted with Kaleidagraph 4.0 software. 

Procedures 

In most of the experiments, reaction solutions were open to air while handling.  Oxygen 

sensitive ferrocenes were purged with argon before mixing.  Light sensitive complexes, 

including ferrocenes and complexes of osmium and cobalt were handled in subdued light.  Most 

of the reactions were studied in 0.1 M HClO4.  The reaction with Ce(III) was examined in 1.0 M 
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HClO4.  Owing to the low solubility of polypyridine ruthenium perchlorates, the solutions were 

prepared in 1 mM HClO4 and mixed in the stopped-flow with Fe(II)/O3 solutions in 0.1 M 

HClO4, resulting in reaction [H+] = 0.05 M.    

Molar extinction coefficients of ferrocenes were determined by dissolving the solid in 7:3 

acetonitrile : water (v/v) and diluting the solution with a 10-fold volume of 0.1 M HClO4 prior to 

recording the UV-Vis spectrum. The extinction coefficient of the ferrocenium derivatives was 

obtained by oxidizing a measured concentration of the corresponding ferrocene derivative with 

excess iron(III) perchlorate in 7:3 acetonitrile : water and recording the spectrum.  

Concentrations of iron(II) were determined with phenanthroline (ε510  = 1.14 x 104 M-1 cm-1) 

after a correction for the absorption by iron(III)-phenanthroline complex, as previously 

described.29  Ozone concentration was obtained from the absorbance at 260 nm using ε260 = 3300 

M-1 cm-1.40  Substrate concentrations were determined spectrophotometrically using the molar 

absorptivities in Table 1.  

Kinetics were measured with an APP sequential stopped-flow instrument by monitoring 

either the disappearance of the reactants or formation of products, as appropriate. Fe(II) and 

ozone solutions were mixed in the pre-mix drive and aged for five half-lives (kFe(II)/O3 = 8.3 x 105 

M-1 s-1)2, to ensure complete formation of Fe(IV), which was then mixed with the substrate 

solution in the flush drive.  An acid range of 0.05 – 0.2 M HClO4 was used in experiments 

designed to study the acid effect on the rate constants for the oxidation of Na3IrCl6 and 

Os(phen)3
2+.   
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Table 1. Spectral Properties of Substrates. 

Substrate λmax /nm (ε /M-1 cm-1) Source 

Fe(Cp)(C5H4COOH) 444 (324) This study 

Fe(C5H4COOH)2 448 (324) This study 

Fe(Cp)(C5H4CH2OH) 435 (100) Ref. 41 

HABTS- 310 (3.66 x 104) Ref. 42 

TFP 255.5 (33400), 306 (3870) This study 

CPZ 254.5 (35900), 306 (4500) This study 

Na3IrCl6 415 (76) Ref. 43 

Ce(ClO4)3 253 (760) Ref. 44 

Os(phen)3(CF3SO3)2 430 (1.9 x 104) Ref. 45 

(H2O)2Co(dmgBF2)2   456 (4.06 x 103) Ref. 36 

Ni(cyclam)2+ 451 (47) Ref. 37 

Ni(hmc)2+ 463 (73) This study 

Ru(5,6-Me2phen)3
2+ 453 (2.04 x 104) Ref. 39 

Ru(4,7-Me2phen)3
2+ 445 (2.53 x 104) Ref. 39 

Ru(bpy)3
2+ 452 (1.46 x 104) Ref. 39 

Fe(phen)3
2+ 510 (1.14 x 104) Ref. 29 

TFP = trifluoperazine, CPZ = chlorpromazine, HABTS- = 2,2'-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid), Cp = cyclopentadienyl, cyclam = 1,4,8,11-tetraazacyclotetradecane, hmc = 
5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. 
 
 

 

 

 



www.manaraa.com

       67 

Results 

Due to the very fast reaction rates observed for most of the used substrates (rate constants 

of 106-108 M-1 s-1), instrumental detection limit and low solubility of some of the metal 

complexes in acidic aqueous solutions, most of the kinetic studies were performed under second 

order conditions in a limited range of concentrations. The reported second order rate constants 

are averages of 2-3 experiments at different concentrations. Pseudo first order conditions were 

used with Na3IrCl6, Os(phen)3
2+

  and Ce(ClO4)3 which react more slowly.  

The low extinction coefficients of the ferrocenes combined with large rate constants 

allowed us to observe and fit only the last 15-50% of the kinetic traces depending on the 

concentrations used.  The traces were collected at the spectral maxima of substrates or products, 

Tables 1 and 2.   

Polypyridyl Complexes of Fe(II), Ru(II) and Os(II) 

Among all the used polypyridine complexes only Os(phen)3
2+ produced the one electron 

oxidation product Os(phen)3
3+. Polypyridyl complexes of Fe(II) and  Ru(II) kinetics showed 

complicated multi-step reactions. No increase in absorbance was observed in the 600 – 700 nm 

range, in the case of Fe(phen)3
2+ and  Ru(bpy)3

2+ reactions, ruling out the formation of 

Fe(phen)3
3+ and  Ru(bpy)3

3+.48,49  In the case of Ru(4,7-Me2phen)3
2+  and Ru(5,6-Me2phen)3

2+ an 

increase in absorbance was observed in the 600 – 650 nm where Ru(III) is expected to absorb,47 

however the change in absorbance was higher than the expected for such Ru(III) complexes 

ruling out the formation of Ru(III) complex or, if formed, will be as by-product along with other 

products. These observations suggest that Feaq
IVO2+ is reacting with the ligand instead of the 

metal center forming some stable radicals intermediates that later will decay forming various 

products or give back the starting complex. 
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Table 2. Spectral Properties of Oxidation Products. 

Product λ /nm (ε /M-1 cm-1) Source 

IrIVCl6
2- 490 (3920) Ref. 43 

Fe(Cp)(C5H4CH2OH)+ 629 (400) Ref. 41 

Fe(Cp)(C5H4COOH)+ 628 (410) This study 

Fe(C5H4COOH)2
+ 628 (400) This study 

ABTS.- 645 (1.35 x 104) Ref. 42 

Ni(cyclam)3+ 308 (1.1 x 104) Ref. 46 

Ni(hmc)3+ 400 (5.7 x 103) This study 

Ru(4,7-Me2phen)3
3+ 630 (1.6 x 103) Ref. 47 

Ru(bpy)3
3+ 675 (476) Ref. 48 

Fe(phen)3
2+ 600 (830) Ref. 49 

Ce(ClO4)4 1380 a  This study 

CPZ=O 235 (33000), 295 (4200) Ref. 50 

a This value was measured under our reaction conditions (~0.1 M Ce(ClO4)4, 1.0 M HClO4) and 
will be different at different cerium and acid concentrations. 
CPZ=O = chlorpromazine sulfoxide, ABTS = 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 
acid), Cp = cyclopentadienyl, cyclam = 1,4,8,11-tetraazacyclotetradecane, hmc = 5,7,7,12,14,14-
hexamethyl-1,4,8,11-tetraazacyclotetradecane. 
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Phenothiazines (CPZ and TFP) 

 

Many reports51-53 have shown that CPZ and TFP undergo one electron transfer reaction to 

produce stable colored radical cations, CPZ•+ and TFP•+ respectively, which can be monitored 

spectrophotometrically. On the other hand, other reports showed that phenothiazines can be 

oxidized to their corresponding sulfoxide either directly via oxygen atom transfer or by the 

further oxidation of the radical cation.52-55 

Feaq
IVO2+ reaction with the phenothiazines, CPZ and TFP, produced the corresponding 

sufloxides directly through oxygen atom transfer.  This was confirmed by the immediate 

formation of the sulfoxides at their maxima (see Table 2) with no formation of the radical cations 

during the reactions. Some of the radical cation was slowly formed after the reaction and was 

surprisingly stable. Further investigation showed that the formed Fe(III) reacts with 

phenothiazines, through a slow equilibrium, to produce the radical cation. 
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HABTS- 

 

HABTS- 

 

50-60% of the Feaq
IVO2+ reaction with HABTS- produced the stable radical anion ABTS•-. 

No ABTS0, the 2-electron product, was formed during the reaction and the amount of HABTS- 

remained after the reaction does not account for the other 40-50%.   This result suggests that part 

of the reaction took place by an attack at one or more reactive sites in the molecule leading to 

oxidative decomposition of HABTS-.   

Other Substrates 

All the other substrates react with Feaq
IVO2+ quantitatively forming their corresponding 

one electron oxidation product.  

The reactions of Feaq
IVO2+ with Na3IrCl6 and Os(phen)3

2+ were carried under acid 

concentrations of 0.05 to 0.2 M HClO4 and no change in the rate constants was observed. 

Table 3 summarizes all the rate constants (kFe) determined in this work.  Kinetic traces 

and conditions are shown in Table S1 and Figures S1-S12.  
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Table 3. Summary of Rate Constants for Oxidations with FeaqO2+, and Reduction Potentials and Self-exchange Rate 
Constants of Reductants.* 

 

Substrate  Product Observed kFe/M-1 s-1 h Eo (V, NHE)  

(Electrochemical 

Conditions at 25 oC) 

k11/M-1 s-1 Source g 

Fe(Cp)(C5H4CH2OH) Fe(Cp)(C5H4CH2OH)+ 6.4 x 107 0.52 

(n-PrOH-H2O (1:1 v/v),  

0.050 M Ba(ClO4)2) 

4.2 x 106 Ref. 56 

Fe(Cp)(C5H4COOH) Fe(Cp)(C5H4COOH) + 1.2 x 107 0.70 

(pH 1, 0.1 M LiCl, 1:1 (v/v) 

aqueous methanol 

4.2 x 106 a  Ref. 57 

Fe(C5H4COOH)2 Fe(C5H4COOH)2
+ 1.0 x 106 0.86  

(pH 1, 0.1 M NaCl) 

4.2 x 106 a Ref. 58 

Na3IrCl6 Na2IrCl6 1.3 x 106 f 0.892  

(0.1 M NaClO4) 

2.3 x 105 Ref. 59, 60 

Os(phen)3
2+ Os(phen)3

3+ 2.5 x 105 f 0.84 2 x 109 Ref. 61, 45 

71 
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(0.95 M NaCl, 0.05 M HCl) 

Ni(cyclam)2+ Ni(cyclam)3+ 4.9 x 107 0.95 

(pH 1.6, 0.3 M NaClO4 ) 

2.0 x 103  

1 x 103 

Ref. 62, 63, 

64 

Ni(hmc)2+ Ni(hmc)3+ 1.2 x 107 1.19 

(pH 2, 0.5 M NaClO4 ) 

1 x 103  b Ref. 65 

Ce(ClO4)3 Ce(ClO4)4 1.5 x 104 1.7  

(1 M HClO4) 

NA Ref. 66 

Co(dmgBF2)2 Co(dmgBF2)2
+ 2.2 x 106 0.65  

(0.1 M HClO4) 

1.7 x 10-4 –  

8.7 x 10-3 

Ref. 36,67 

Ru(4,7-Me2phen)3
3+ Not identified Multi-step 1.09  

(1 M H2SO4) 

1.2 x 109 c Ref. 39 

Ru(5,6-Me2phen)3
2+ Not identified Multi-step 1.20  

(1 M H2SO4) 

1.2 x 109 c Ref. 39 

Ru(bpy)3
3+ Not identified Multi-step 1.26  

(1 M H2SO4) 

1.2 x 109 Ref. 39,68 

Fe(phen)3
2+ Not identified Multi-step 1.06 (1 M H2SO4) 1.3 x 107 e Ref. 69,70 

72 
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* see Tables 1 and 2 footnotes for list of abbreviations. 
a assumed to be the same as Fe(Cp)(C5H4CH2OH) 
b assumed to be the same as Ni(cyclam)3+/2+ 
c assumed to be the same as Ru(bpy)3

2+ 
d oxidation potentials of direct oxidation of CPZ and TFP to the corresponding sulfoxides are 0.95 and 1.0 V 
respectively in 0.5 M H2SO4.71 
e measured at 3 oC. 
f same rate constant was measured at 0.05 – 0.20 M HClO4. 
g references are for reduction potential and self-exchange rate constant of reductant respectively. 
h all rate constants are measured in 0.1 M HClO4 except for Ce(ClO4)3 which was measured in 1.0 M HClO4 

 

 

 

 

CPZ CPZ=O 1.2 x 107 0.799 d  

(0.25 M H2SO4) 

 Ref. 71 

TFP TFP=O 5.3 x 106 0.89 d  

(0.25 M H2SO4) 

 Ref. 71 

HABTS- ABTS•- + other not 

identified products 

4.6 x 106 0.81 

(1.5 M HClO4) 

4 x 107 Ref. 42 

73 
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Discussion 

This work focuses on electron transfer reactivity of Feaq
IVO2+.  Various metal complexes 

with different ligands were chosen to cover a wide range of potentials and to explore different 

mechanistic possibilities.  For example, polypyridyl complexes of Os(II), Fe(II) and Ru(II) have 

a moderate to high reduction potentials and known to react through outer-sphere ET mechanism 

providing their near-diffusion self-exchange rate constants.45,61,72 Ferrocenes, on the other hand, 

have low to moderate reduction potentials and have been reported to react with some Fe(IV)-oxo 

complexes through outer-sphere ET mechanism.19,20 However, ferrocene derivatives having –

COOH or –CH2OH groups on the cyclopentadienyl ring might also bind to the Feaq
IVO2+ and 

react through inner-sphere ET as expected with other substrates like Na3IrCl6 which might bind 

to the Feaq
IVO2+ though a chloride bridge during the ET process. Co(II)(dmgBF2)2 is known to 

react through inner-sphere ET mechanism as previously reported.36 In addition, both Na3IrCl6 

and Os(phen)3
2+ were chosen to study the acid effect on reactivity since their reduction potentials 

do not have acid dependence as other substrates, which would make it possible to test the acid 

effect on Feaq
IVO2+ reactivity. 

Results show that the ET second order rate constants have no straightforward dependence 

on the reduction potentials (see Table 3).  This would suggest that different substrates react 

through different ET mechanisms. However, Os(phen)3
2+ seems to react through outer-sphere ET 

due to the following: i) Feaq
IVO2+ failed to oxidize Fe(II) and Ru(II) metal centers of other 

polypyridine complexes, however, it was able to oxidize metal complexes with about similar or 

higher reduction potentials, such as Ni(II) macrocyclic compounds and Ce(ClO4)3, suggesting 

that the latter react by different mechanism. This would also suggest that Feaq
IVO2+ does not have 

enough power to oxidize the metal center in these polypyridyl complexes through outer-sphere 
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ET path and thus, probably, attacking at the ligand. ii) Substrates with higher reduction potentials 

have shown higher ET rate constants compared to Os(phen)3
2+ indicating that these substrates do 

not utilize an outer-sphere path as Os(phen)3
2+. 

The outer-sphere ET characteristics of Os(phen)3
2+ reaction make it possible to examine 

its reaction with  Feaq
IVO2+ in light of Marcus theory of outer-sphere ET using the simplified 

equation (Eq. 1)73, where kET = kFe (Table 3) is the electron-transfer rate constant, K12 is the 

equilibrium constant, k11 and k22 are the electron self-exchange rate constants 

for the substrate and Fe(IV)/(III) respectively. The full equation has additional terms (w and ƒ) but 

in the present case these will not greatly change the outcome. Using Nernest equation (Eq. 2), 

where n is the number of electrons transferred =1, and Eo = Eo
FeIV/III - Eo

substrate is the reaction 

standard potential, one can derive Eq. 3 and get an estimate of (log k22 + 16.9 Eo
FeIV/III) which 

should represent a constant value (see Table 4). 

 

 (log k22 + 16.903 Eo
FeIV/III) = 2 log kET – log k11 + 16.903 Eo

substrate …………… (3) 

Table 4 shows that no value was similar to the Os(phen)3
2+, indicating that these 

substrates might not react through outer-sphere ET and suggesting inner-sphere path or other 

types of interactions. However, Na3IrCl6 reaction showed that IrCl6
2- is formed as the main 

product and no Ir(OH2)Cl5
- was formed, since both have different spectral characteristics,74 

indicating no chloride transfer. This might also be consistent with outer-sphere mechanism, 

providing the small difference in the reduction potential and the ET rate constant compared to 

Os(phen)3
2+ and the fact that the work term, principally electrostatic, in Marcus equation was not 

log ��� = �
�.�!"�#  $%………………. (2) 

kET = (k11.k22.K12)1/2
 …………………… (1) 
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taken into consideration. The work required to bring the two oppositely charged complexes 

IrCl6
3- and Feaq

IVO2+ is expected to be lower compared to the Os(phen)3
2+ reaction which have 

two complexes of the same +2 charge, which would suggest higher rate in IrCl6
3- case. Also, 

ferrocenes did not produce the same value (Table 4) compared to each other or compared to 

Os(phen)3
2+, however, their values were the closest to Os(phen)3

2+ which might suggest some 

outer-sphere characteristics. The scatter in the ferrocenes results could be attributed to the 

estimated self-exchange rate constants, the lack of the precise reduction potential for 

Fe(Cp)(C5H4CH2OH) under our reaction conditions and (or), again, neglecting the work term in 

Marcus equation, which is expected to be lower for the ferrocenes. 

Table 4. Calculated (log k22 + 16.9 Eo
FeIV/III) for Some of the Substrates Using Eq. 3.   

Substrate KFe/M-1 s-1 Eo (V, NHE)a k11 /M-1 s-1 a  log(k22)+16.9 Eo
FeIV/III 

Fe(Cp)(C5H4CH2OH)  6.4 x 107 0.52  4.2 x 106 17.8 

Fe(Cp)(C5H4COOH)  1.2 x 107 0.70  4.2 x 106 19.4 

Os(phen)3
2+  2.5 x 105 0.84  2 x 109  15.7 

Na3IrCl6
  1.3 x 106 0.892  2.3 x 105  21.9 

Ni(cyclam)2+ 4.9 x 107 0.95  2.0 x 103  28.1 

Fe(C5H4COOH)2  1.0 x 106 0.86  4.2 x 106 19.9 

Ni(hmc)2+ 1.2 x 107 1.19  1 x 103  31.3 

HABTS-  4.6 x 106 0.81 4 x 107 19.4 

* see Tables 1 and 2 footnotes for list of abbreviations. 
a see table 3 for references and electrochemical conditions. 
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On the other hand, there is no dependence of the ET reactivity on acid concentration 

within acid range of 0.05 – 0.2 M and using Na3IrCl6 and Os(phen)3
2+ as substrates, indicating 

that there is no prior protonation of Feaq
IVO2+ and that the reactions proceed by electron transfer, 

forming Feaq
IIIO+, followed by rapid protonation to form Feaq

IIIOH2+ (equation 2, Scheme 1).  

The findings that Os(phen)3
2+ reacts through outer-sphere mechanism and shows no 

reactivity dependence on acid concentration suggest that the Feaq
IVO2+/Feaq

IIIO+ potential cannot 

be much lower than that for Os(phen)3
3+/ Os(phen)3

2+ couple (0.84 V vs. NHE), since the 

reaction equilibrium is always driven in the forward direction by the immediate protonation of 

the Feaq
IIIO+. 

In a previously study,19 the reactions of some synthetic Fe(IV)-oxo complexes, bearing 

tetradentate N4 ligands, and ferrocenes as electron donor (see Table 5) have been reported to 

proceed by outer-sphere ET mechanism. In addition, the reactivities of the synthetic Fe(IV)-oxo 

complexes were compared to horseradish peroxidase (HRP) compound I and compound II 

(compound I contains a ferryl iron weakly spin-coupled to a porphyrin π-radical cation and 

compound II has ferryl iron center) and it was found that HRP-I has the highest reactivity due to 

the lowest reorganization energy and high reduction potential (see Table 5).  A comparison for 

the reactivity of Feaq
IVO2+ versus HRP with the ferrocenes used in this study is shown in Table 5. 

Compound I reacts 100-times faster than compound II which control the rate limiting step in 

HRP reactions.  

Table 5 shows that Feaq
IVO2+ rate constants are the highest among the other studied 

synthetic and enzymatic Fe(IV)-oxo complexes with ~10-times faster than the highly reactive 

HRP compound I. In addition, the ferrocenes used with the synthetic Fe(IV)-oxo complexes 

utilize lower reduction potential range than the ferrocenes used in this study, and the HRP 
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reactions were studied at ~ pH 6 where Fe(Cp)(C5H4COOH) and Fe(C5H4COOH)2 have shown 

to have lower reduction potential due to the deprotonation of the COOH group at higher pH,57,58 

which might suggest even lower rate constants of the other Fe(IV)-oxo complexes reactions 

under our conditions. 

Despite the difficulties to study the redox chemistry of Feaq
IVO2+ and the insufficient 

information about its precise ET properties, Feaq
IVO2+ species are shown to be highly reactive 

and capable of oxidizing wide range of substrates including Ce3+ (Eo Ce4+/3+ = 1.7 V) with ~ 104 

M-1 s-1 ET rate constant.  
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Table 5. Rate Constants for Ferrocenes Reactions with Tetradentate N4-Fe(IV)-oxo Complexes, HRP and Feaq
IVO2+. a 

Electron donor Eox (V) 

kET (M-1 s-1) 

1 b 

E = 0.63 V 

2 b 

E = 0.73 V 

3 b 

E = 0.75 V 

4 c 

E = 0.97 V 

HRP d 

steady state 

HRP-I d 

E = ~ 0.9 V 

Feaq
IVO2+ 

Ferrocene 0.61 14 24 5 4.9 x 103 1.9 x 105 - - 

Dimethylferrocene 0.50 1.0 x 102 1.0 x 102 24 - - - - 

Decamethylferrocene 0.16 6.3 x 104 4.3 x 104 7.0 x 103 - - - - 

Fe(Cp)(C5H4CH2OH) 0.52 - - - - 3.56 x 104 - 6.4 x 107 

Fe(Cp)(C5H4COOH) 0.70 - - - - 8.9 x 103 1 x 106 1.2 x 107 

Fe(C5H4COOH)2 0.86 - - - - 7.3 x 103 - 1.0 x 106 

1 = (TMC)FeIV(O)(NCCH3)2+,75 2 = (Bn-TPEN)FeIV(O)2+,18 3 = (N4Py)FeIV(O)2+ 18 and 4 = (bisp)FeIV(O)(NCCH3)2+ 

20, where TMC = 1,4,8,11-tetra-methyl-1,4,8,11-tetraazacyclotetradecane; Bn-TPEN = N-benzyl-N,N′,N′-tris(2-
pyridylmethyl)ethane-1,2-diamine; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine; bisp = 3,7-
diazabicyclo[3.3.1]nonane.  
a all reported potentials are vs. NHE. 
b measured in deaerated acetonitrile at 298K. 18,19,75 
c measured in deaerated acetonitrile at 238K. 20 
d measured at ~ pH 6 at 298 K. 76-79 

79 
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Conclusions 

Electron transfer properties of Feaq
IVO2+ have been investigated with variuos inorganic 

electron donors. The large measured ET rate constants ~ 104 - 108 M-1 s-1 shows how reactive the  

Feaq
IVO2+  species are, toward electron donors. However, substrates reactivities show no 

straightforward dependence on the reduction potentials indicating a non outer-sphere ET 

behavior.  

The fact that Os(phen)3
2+ rate constant was smaller than other substrates utilizing greater 

reduction potentials, such as Na3IrCl6 and Ni(II) macrocyclic tetraamines complexes, and that 

Feaq
IVO2+ failed to oxidize the metal center in other polypyridine complexes having reduction 

potentials greater than Os(phen)3
2+  complex, strongly argues that Os(phen)3

2+  reacts by outer-

sphere ET mechanism.  In addition, changing acid concentration from 0.05 to 0.2 M showed no 

change in the measured rate constants for Os(phen)3
2+ reaction, indicating that there is no prior 

protonation of Feaq
IVO2+ and that Feaq

IIIO+ is formed in the ET step followed by proton transfer to 

form Feaq
IIIOH2+. In other words, the one electron reduction potential for the FeaqO2+ / FeaqO+ 

couple cannot be much lower than that for Os(phen)3
3+/ Os(phen)3

2+ couple (0.84 V vs. NHE). 

The reactivity of Feaq
IVO2+ toward ferrocenes as electron donors was viewed in 

comparison to HRP enzyme and other synthtic tetradentate-N4 Fe(IV)-oxo complexes, having 

reduction potentials up to 0.97 V vs. NHE, and found that Feaq
IVO2+ has the highest reactivity.  

The lack of electron donating coordinating ligands in Feaq
IVO2+ provides an electron deficient 

metal center that exhibits high reactivity toward various electron donors. 
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GENERAL CONCLUSIONS 

 

The chemistry of iron(IV) complexes in the absence of stabilizing ligands is still not well-

understood. Their high reactivity and short life time make it difficult to study their chemistry. In 

addition, the chemical environment is another factor that need to be taken into consideration 

when study these complexes. Our data and results have shown that a moderate change in the 

reaction conditions lead to a dramatic change in the chemistry and life time of these species.  

Fe(IV) has always been invoked as in alternative intermediate to the hydroxyl radical in 

the reaction of  Fe(II) and H2O2 (Fenton reaction).1 The lack of the right substrate to distinguish 

between the two, OH radical and Fe(IV), in addition to the fact that different studies were done 

under different reaction conditions made it difficult to provide solid evidence on Fe(IV) 

formation.  Now, we have shown that the intermediate in Fenton reaction changes form hydroxyl 

radical at pH ≤ 3 to Fe(IV) at near neutral pH. This was shown by the oxidation of (CH3)2SO to 

(CH3)2SO2, indicative of Fe(IV), and the regeneration of Fe(II) at pH 6-7. The OH radical 

reaction with (CH3)2SO forms methylsulfinic acid, ethane and Fe(III) but only at pH ≤ 3.2 

However, large concentrations of (CH3)2SO were needed to achieve significant turnover numbers 

at pH 6-7 owing to the rapid competing reaction between Fe(II) and Fe(IV) that leads to 

irreversible loss of the catalyst (Fe(II)). 

When the reaction was run at pH 6-7 but in of phosphate buffer, instead of the used non-

coordinating buffers. Products were changed to ethane and methylsulfinat, indicative of OH 

radicals, and strikingly showing how this reaction is sensitive to the chemical environment. 
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On the other hand, (H2O)5FeO2+ generated in the reaction of Fe(H2O)6
2+ and O3 reacts 

with alcohols, ethers and aldehydes through two parallel 1-e (H-atom transfer) and 2-e (hydride 

transfer) pathways.3 The hydride path is catalytic as it generates Fe(H2O)6
2+ which can be 

reoxidized to (H2O)5FeO2+. However, the catalytic efficiency is poor because of the loss of the 

catalyst (Fe(H2O)6
2+ as (Fe(H2O)6

3+ in the 1-e path. In this work we have shown that the reaction 

becomes catalytically efficient by changing the solvent to CH3CN.  Beside, greater selectivity 

toward the less oxidized product is observed and > 80% of the catalyst (Fe(CH3CN)6
2+) was 

regenerated even when only sub-millimolar concentrations of Fe(CH3CN)6
2+ were used. 

However, the catalyze oxidations of alcohols showed 70-85% products yields, unlike ethylether 

and (CH3)2SO who showed 100% yields; This and the non-complete recovery of the catalyst 

indicate that the non-catalytic 1-e path is still involved. However, the 1-e path does not terminate 

the catalytic cycle as in water. This could be rationalized by the difference in the redox 

thermodynamics of iron in the two solvents and the acid-base chemistry of superoxide radical, 

HO2
•/O2

•-. The two-electron path is much more prominent in acetonitrile, presumably because it 

avoids the strongly oxidizing Fe(III) (E = 1.6 V vs. NHE)4. On the other hand, superoxide radical 

expected to form in the 1-e path is a key intermediate in the chain decomposition of O3.5-10 In 

acetonitrile O2
•- is strong reductant (E0 (O2/O2

•-) = -0.80 V vs. NHE)11 which rapidly reduces 

Fe(III) back to Fe(II). However, under acidic conditions the superoxide is protonated (HO2
•) and 

incapable of reducing Fe(H2O)6
3+. This proposal was tested by adding Fe(III) to the reaction 

mixture in acetonitrile. The presences of Fe(III) at the beginning of the reaction enhanced the 

alcohols yields and showed > 100% Fe(II) at the end of the reaction, proving that Fe(III) was 

reduced during the reactions and that the ozone decomposition was reduced. 
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Finally, the electron transfer reactivity of Feaq
IVO2+ have been investigated with variuos 

inorganic and some organic substrates having reduction potentials ranging from 0.52 to 1.7 V vs. 

NHE.  Most of the substrates have shown to react with Feaq
IVO2+ quantitatively producing the 1-e 

oxidation product except for the phenothiazines who reacted by oxygen atom tranfer and 

produced the corresponding sulfoxide. Also, the reactions with the polypyridyl complexes of 

Fe(II) and Ru(II) did no oxidize the matal center. 

The fact that Os(phen)3
2+ rate constant was smaller than other substrates utilizing greater 

reduction potentials, and that Feaq
IVO2+ failed to oxidize the metal center in other polypyridine 

complexes having reduction potentials greater than Os(phen)3
2+  complex, strongly argues that 

Os(phen)3
2+  reacts by outer-sphere ET mechanism.  In addition, the no dependence of 

Os(phen)3
2+ reactivity on acid concentration (0.05 – 0.2 M) indicates no prior protonation of the 

Feaq
IVO2+, which is consistent with stepwise electron-transfer followed by proton transfer. 

Results suggest that the Feaq
IVO2+/Feaq

IIIO+ potential is not much lower than that for Os(phen)3
3+/ 

Os(phen)3
2+ couple (0.84 V vs. NHE). 

The fact that Feaq
IVO2+ is capable of oxidizing wide range of metal compounds including Ce3+ 

(Eo
red = 1.7 V)12 with ~ 104 M-1 s-1 and other metals with rate constant up to ~108 M-1 s-1 reveals 

its oxidation power. 
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APPENDIX A 

pH-INDUCED MECHANISTIC CHANGEOVER FROM HYDROXYL 

RADICALS TO IRON(IV) IN THE FENTON REACTION  

 

Additional experimental detail 

 

The following chemicals were obtained commercially and used as received: iron(II) 

perchlorate hydrate (98%), iron(III) perchlorate hydrate (low chloride < 0.005%), deuterio 

perchloric acid DClO4 (68 wt% in D2O, 99+ atom % D), titanium(IV) oxysulfate (99.99% purity, 

15 wt% solution in dilute sulfuric acid), deuterium oxide (99.9 atom %D), (R)-(+)-methyl p-tolyl 

sulfoxide (99%), and 1,10-phenanthroline (99+ %) (all Aldrich), dimethyl sulfoxide (≥ 99.9%, 

A.C.S spectrophotometric grade, Sigma-Aldrich), sodium hydroxide (99.1%), hydrogen peroxide 

(30 wt%), perchloric acid (70 wt%), anhydrous dibasic sodium phosphate (all Fisher), monobasic 

sodium phosphate monohydrate (Baker) piperazine-N,N’-bis(4-butanesulfonic acid) (PIPBS), 4-

(N-morpholino)butanesulfonic acid (MOBS), 3-(N-morpholino)-propanesulfonic acid (MOPS), 

and 2-(N-morpholino)ethanesulfonic acid (MES) (all GFS).   

Stock solutions of iron(II) perchlorate in H2O or D2O were prepared freshly before each 

set of experiments and standardized with phenanthroline.  Solutions of H2O2 were standardized 

with titanium oxysulfate1 which places a reliable detection limit at 0.02 mM H2O2.  Deionized 

water was further purified by passage through a Barnstead Easy Pure II -UV/UF water purifier.   

UV-Vis absorbance measurements and kinetic studies used a Shimadzu UV-3101 PC 

spectrophotometer, Olis RSM-1000 stopped-flow instrument, and Applied Photophysics (APP) 

sequential stopped-flow DX-17MV at 25.0 ± 0.1 °C.  Gaseous products were analyzed by an 

Agilent Technologies 7890A GC gas chromatograph equipped with a FID detector and a 15-m 

capillary column (GS-GASPRO), 0.320 mm I.D.  Nitrogen flow rate was constant at 25 cm3/s. 
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Both the split injector (1:40) and FID detector were held at 2000 C.  The initial oven temperature 

was 400 C, and was increased by 100 C/min.  1H-NMR spectra were recorded with a 400 MHz 

Bruker DRX-400 spectrometer at room temperature.  The pH was measured with an Accumet 

AP71 pH meter.  Kinetic experiments were performed at 25.1 ±0.10 C.   

Procedures  All of the solutions were purged with argon before mixing and appeared 

clear to the eye in both tertiary amine and phosphate buffers prior to and during the reaction.    

The solvent was H2O for kinetic studies, and D2O for NMR product analysis.  The pH (pD) was 

controlled with noncoordinating tertiary amine buffers MES (pKa 6.06), MOPS (pKa 7.09), 

MOBS (pKa 7.48) and PIPBS (pKa1 4.29, pKa2 8.55)2 or with phosphate buffers (pH 6-8).  Buffer 

concentrations were typically 8-50 times greater than the concentration of the limiting reagents, 

i. e. at the level required to hold the pH at the desired value without interfering with the NMR 

spectra or altering the chemistry.  The pH decrease in kinetics experiments was less than 0.2 

units. In the NMR experiments, which typically used 1-2 mM of Fe(II) and H2O2, the pD 

decrease was typically 0.3-0.5 units.  Solutions were acidified before the NMR spectra were 

recorded. Concentrations of Fe(II) in spent reaction solutions were determined with 

phenanthroline. A correction was applied for the absorbance of iron(III)-phenanthroline as 

previously described.3 

The stoichiometry was determined from absorbance changes at 270 nm using ∆ε270 = 

2650±50 M-1 cm-1 at pH 6-7.  This value was determined by oxidizing a solution of Fe(II) (0.010 

- 0.020 mM) with excess H2O2 (0.1 - 1.5 mM) in the stopped-flow and monitoring the 

absorbance for up to 30 seconds after the completion of the reaction.  During this time, the 

reading remained constant and yielded ε270 = 2600±50 M-1 cm-1.  Several experiments were also 

performed on a longer time scale by mixing the reagents (0.02 mM Fe(II) and 0.2 mM H2O2 in 
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0.6 mM MES or MOPS buffer) in a spectrophotometric cell and monitoring the absorbance with 

a conventional spectrophotometer.  The absorbance after the completion of the reaction remained 

constant for at least five minutes and yielded ε270 = 2700±50 M-1 cm-1.  The constancy of ε270 on 

millisecond-to-minute time scale confirms that the turbidity or precipitation of iron(III) did not 

affect absorbance readings.  This point is also illustrated in the kinetic plots in Figures S6-S8.  

The three experiments had identical initial concentrations of Fe(II) and H2O2 (in excess), while 

the concentration of (CH3)2SO was varied.  The reaction times varied over a factor of 14, but the 

overall absorbance change was the same within the experimental error, showing again that 

changes in the degree of hydrolysis or agglomeration of the Fe(III) product either did not take 

place or had no effect on the absorbance around 270 nm.   

Product analysis by NMR.  A solution of hydrogen peroxide was added to a magnetically 

stirred solution of Fe(H2O)6
2+/Fe(H2O)5OH+ (pKa = 9.5)4 and substrate in D2O buffered at the 

desired pD under argon.  The pH was measured before and after the reaction, and converted to 

pD by adding 0.4 to the measured value.  Immediately after the completion of the reaction, the 

solutions were acidified to pD 1 with perchloric acid to avoid agglomeration and precipitation of 

iron(III) hydroxide(s), and the NMR spectrum was run within minutes.  Such solutions contained 

small amounts of unreacted Fe(II) or H2O2, but not both, so that no additional oxidation of the 

substrate could take place after the acidification. Acetonitrile (0.79 mM) was used as internal 

standard to quantify the products.  No shift or broadening of the product resonances was 

observed in acidified solutions.   

In phosphate buffer at pH 7, the products are ethane (60% yield by GC) and 

methylsulfinate (25% by NMR), indicative of HO• radicals.  The resonances were somewhat 

broadened, most likely because solutions of iron(III) became slightly inhomogeneous during the 
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time required to record the spectrum.  The reasons for the lower yields of methylsulfinate are not 

fully understood, but a portion of the anion may be complexed to the Fe(III) product and thus not 

detectable by NMR.  In acidic solutions, where the binding would be much weaker (pKa for 

CH3S(O)OH is 2.35), the methyl signal for methylsulfinic acid is shifted to 2.50 ppm and 

appears on the side of the strong (CH3)2SO signal (2.55 ppm) which makes the integration 

imprecise.  Under these conditions, a signal for sulfonic acid (2.63 ppm) was also detected, but it 

was not well separated from DMSO.  Control experiments with samples of genuine sulfinic acid 

confirmed that significant oxidation to sulfonic acid takes place in the time required for (aerobic) 

manipulation of the solutions and the recording of the spectrum.  Despite the difficulties in 

detecting all of the expected sulfinic acid, the majority of the reaction in phosphate buffers 

appears to involve hydroxyl radicals based on the data and arguments in the main text, and on the 

finding that the yields of the accompanying product, ethane, were much higher, about 60% 

(Table 1).   

 HO• + (CH3)2SO →  CH3SO2H + CH3
• (→ 0.5 C2H6)  

Stopped-flow experiments.  Aqueous solutions of iron(II) were mixed with the buffer and 

dmso immediately before the experiment and loaded into one of the stopped-flow syringes.  The 

other syringe was filled with the H2O2 solution.  The formation of Fe(III) was monitored either at 

270 nm with the Applied Photophysics APP DX-17MV instrument or in the 260-320 nm range 

with an Olis RSM-1000 rapid scan instrument.   
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List of Figures 

Figure S1. 1H NMR spectrum of the products of the reaction of 1.2 mM Fe(ClO4)2, 1.1 mM 

H2O2 and 36 mM DMSO in MOPS buffer (11 mM).  Initial pD 7.6, final pD 7.2. Spectrum was 

recorded after acidifying reaction mixture to 0.1 M DClO4.  The reaction generated (50 ± 5 µM) 

DMSO2.  13C satellite peaks are denoted with an asterisk.   

Figure S2. a) 1H NMR spectrum showing TMSO2 (0.65 ± 0.05 mM) generated in the reaction of 

1.8 mM Fe(ClO4)2, 2.4 mM H2O2 and 29 mM TMSO in PIPBS buffer (15 mM).  Initial pD 7.1, 

final pD 5.7.  b) Control experiment: 1H NMR spectrum of a mixture of H2O2 (2.0 mM), TMSO 

(43 mM) and PIPBS buffer (22 mM) in D2O, pD 7.1.  The spectra were recorded without 

acidifying the reaction mixtures. 13C satellite peaks are denoted with an asterisk.   

Figure S3. 1H NMR spectrum after the completion of the reaction of 1.0 mM Fe(ClO4)2, 1.0 mM 

H2O2 and 50 mM TMSO in D2O, phosphate buffer (20 mM). Initial pD 6.6, final pD 6.0.  

Spectrum was recorded after acidifying reaction mixture to 0.1 M DClO4. 13C satellite peaks are 

denoted with an asterisk.    

Figure S4. 1H NMR spectrum showing (CH3)2SO2 (0.26 mM) generated from the reaction of 

Fe(ClO4)2 (0.49 mM), H2O2 (0.49 mM) and (CH3)2SO (190 mM) in D2O, MES buffer (9.6 mM), 

pD 6.7.  Spectrum was recorded after acidifying the reaction mixture to 0.1 M DClO4. 13C 

satellite peaks are denoted with an asterisk.   

Figure S5  1H NMR spectrum showing (CH3)2SO2 (0.49 mM) generated from the reaction of 

Fe(ClO4)2 (0.49 mM), H2O2 (0.49 mM) and (CH3)2SO (950 mM) in MES buffer (9.6 mM), pD 

6.70.  Spectrum was recorded after acidifying the reaction mixture to 0.1 M DClO4. 13C satellite 

peaks are denoted with an asterisk.   

Figure S6.  Kinetic (stopped flow) trace for a reaction between 0.020 mM Fe(II) and 0.78 mM 

H2O2 in the absence of (CH3)2SO, pH 6.2 (0.56 mM MES) 

Figure S7. Kinetic (stopped flow) trace for a reaction between 0.020 mM Fe(II) and 0.78 mM 

H2O2 at 0.50 M (CH3)2SO, pH 6.2 (0.56 mM MES) 

Figure S8.  Kinetic (conventional spectrophotometer) trace for a reaction between 0.020 mM 

Fe(II) and 0.78 mM H2O2 at 0.98 M DMSO, pH 6.2 (0.6 mM MES) 
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Figure S9.  Plot of kobs vs [H2O2] for the Fe(II)/ H2O2 reaction at pH 6.1 (MES buffer). 

Conditions: [Fe(ClO4)2]0 = 0.005 – 0.035 mM, [MES] = 0.25 – 0.55 mM, 25 °C.  pH decreased 

during the reaction by 0.2 units, see text. 

Figure S10.  Plot of kobs vs [H2O2] for the Fe(II)/ H2O2 reaction at pH 7 in a MOPS buffer. 

Conditions: [Fe(ClO4)2]0 = 0.008 – 0.015 mM, [MOPS] = 0.5 - 0.6 mM, 25 °C.  pH decreased 

during the reaction by 0.2 units, see text.  

Figure S11.  Plot of kobs vs [Fe(II)] for the Fe(II)/ H2O2 reaction at pH 6.1 in a MES buffer. 

Conditions: [H2O2]0 = 0.005 - 0.02 mM, [MES] = 0.5-0.6 mM, 25 °C.  pH decreased during the 

reaction by 0.2 units, see text. 

Figure S12. Representative kinetic trace in phosphate buffer.  Conditions: 0.031 mM Fe(II), 1.0 

mM H2O2, pH 6.1 (0.6 mM phosphate buffer) 

Figure S13.  Plot of pseudo-first-order rate constants for the reaction of Fe(ClO4)2 with H2O2 

against the concentration of H2O2 in phosphate buffer.  Conditions: [Fe(ClO4)2] = 0.018 – 0.030 

mM, [phosphate] = 0.60 mM, pH = 6.2.  

Figure S14.  (a) 1H NMR spectrum of the reaction mixture after the completion of the reaction 

between Fe(ClO4)2 (1.0 mM), H2O2 (1.0 mM), and (CH3)2SO (5 mM) at pD 1 in the presence of 

5 mM MES.  The reaction generated CH3SO2H and C2H6 in amounts comparable to those 

obtained in the absence of MES.  b) Mixture of MES (5 mM) and H2O2 (1 mM), pD 1. c) MES 

(5 mM), pD 1. 
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Figure S1. 1H NMR spectrum of the products of the reaction of 1.2 mM Fe(ClO4)2, 1.1 mM 
H2O2 and 36 mM DMSO in MOPS buffer (11 mM).  Initial pD 7.6, final pD 7.2. Spectrum was 
recorded after acidifying reaction mixture to 0.1 M DClO4.  The reaction generated (50 ± 5 µM) 
DMSO2.  13C satellites are denoted with an asterisk. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

       97 

 

 

 

 

Figure S2. a) 1H NMR spectrum showing TMSO2 (0.65 ± 0.05 mM) generated in the reaction of 
1.8 mM Fe(ClO4)2, 2.4 mM H2O2 and 29 mM TMSO in PIPBS buffer (15 mM).  Initial pD 7.1, 
final pD 5.7.  b) Control experiment: 1H NMR spectrum of a mixture of H2O2 (2.0 mM), TMSO 
(43 mM) and PIPBS buffer (22 mM) in D2O, pD 7.1.  The spectra were recorded without 
acidifying the reaction mixtures. 13C satellite peaks are denoted with an asterisk.   
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Figure S3. 1H NMR spectrum after the completion of the reaction between 1.0 mM Fe(ClO4)2, 
1.0 mM H2O2 and 50 mM TMSO in D2O, phosphate buffer (20 mM). Initial pD 6.6, final pD 6.0.  
13C satellites are denoted with an asterisk. 
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Figure S4. 1H NMR spectrum showing (CH3)2SO2 (0.26 mM) generated from the reaction of 
Fe(ClO4)2 (0.49 mM), H2O2 (0.49 mM) and (CH3)2SO (190 mM) in D2O, MES buffer (9.6 mM), 
pD 6.7.  Spectrum was recorded after acidifying the reaction mixture to 0.1 M DClO4.  13C 
satellites are denoted with an asterisk. 
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Figure S5  1H NMR spectrum showing (CH3)2SO2 (0.49 mM) generated from the reaction of 
Fe(ClO4)2 (0.49 mM), H2O2 (0.49 mM) and (CH3)2SO (950 mM) in MES buffer (9.6 mM), pD 
6.70.  Spectrum was recorded after acidifying the reaction mixture to 0.1 M DClO4. 13C satellite 
peaks are denoted with an asterisk.   
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Figure S6.  Kinetic (stopped flow) trace for a reaction between 0.020 mM Fe(II) and 0.78 mM 
H2O2 in the absence of DMSO, pH 6.2 (0.56 mM MES) 
 

 

Figure S7. Kinetic (stopped flow) trace for a reaction between 0.020 mM Fe(II) and 0.78 mM 
H2O2 at 0.50 M DMSO, pH 6.2 (0.56 mM MES) 
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Figure S8.  Kinetic (conventional spectrophotometer) trace for a reaction between 0.020 mM 
Fe(II) and 0.78 mM H2O2 at 0.98 M DMSO, pH 6.2 (0.6 mM MES) 
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Figure S9.  Plot of kobs vs 2[H2O2] for the Fe(II)/ H2O2 reaction at pH 6.1 in MES buffer. 
Conditions: [Fe(ClO4)2]0 = 0.005 – 0.035 mM, [MES] = 0.25 – 0.55 mM, 25 °C.  The pH 
decreased during the reaction by 0.2 units, see text. 
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Figure S10.  Plot of kobs vs [H2O2] for the Fe(II)/ H2O2 reaction at pH 7 in a MOPS buffer. 
Conditions: [Fe(ClO4)2]0 = 0.008 – 0.015 mM, [MOPS] = 0.5 - 0.6 mM, 25 °C.  pH decreased 
during the reaction by 0.2 units, see text.  
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Figure S11.  Plot of kobs vs [Fe(II)] for the Fe(II)/ H2O2 reaction at pH 6.1 in a MES buffer. 
Conditions: [H2O2]0 = 0.005 - 0.02 mM, [MES] = 0.5-0.6 mM, 25 °C.  pH decreased during the 
reaction by 0.2 units, see text. 
 

Comment on Figure S11.  The scatter of the points in Figure S11 is larger than in experiments 

with excess H2O2 (Figs S9 - S10).  The plot also exhibits an apparent intercept, but overall the 

data are in agreement with those obtained with excess H2O2 in that the slope of the line in Figure 

S11 (kFe = 670 ± 70) M-1s-1) is comparable to that obtained by plotting kobs against 2[H2O2] in 

Figure S10 (kFe = 652 ± 19 M-1s-1) for experiments using excess H2O2.  These results are as 

expected for the 2:1 [Fe(II)]/[H2O2] stoichiometry that was also calculated directly from the 

observed absorbance changes in these experiments.  All of the experiments on catalytic oxidation 

of sulfoxides required (by definition) excess H2O2, conditions that exhibited clean kinetic 

behavior as shown in Figures S9 and S10.   
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Figure S12. A representative kinetic trace in phosphate buffer.  Conditions: 0.031 mM Fe(II), 
1.0 mM H2O2, pH 6.1 (0.6 mM phosphate buffer) 
 

 

Figure S13.  Plot of pseudo-first-order rate constants for the reaction of Fe(ClO4)2 with H2O2 
against the concentration of H2O2 in phosphate buffer.  Conditions: [Fe(ClO4)2] = 0.018 – 0.030 
mM, [phosphate] = 0.60 mM, pH = 6.1-6.2.  
 
 
 

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3

A
b
s

2
7

0

Time/s

0

1

2

3

4

0 0.4 0.8 1.2

k
o

b
s
/s

-1

[H
2
O

2
] mM



www.manaraa.com

       107 

Comment on noninterference of buffers.  

 Despite the large rate constant reported for the reaction of HO• with tertiary amines k = 

(2-3) × 109 M-1s-1,S5 this reaction cannot be important under our conditions even if HO• radicals 

were involved.  This is so because the rate constant for the (CH3)2SO/HO• reaction is even larger, 

kDMSO = 7 × 109 M-1s-1, and the concentration of (CH3)2SO was also always much higher (and 

never less than four times higher) than the buffer concentration, so that inequality 

kDMSO[(CH3)2SO] >> kbuffer[buffer] held true in every experiment.   

 In acidic solutions, where the Fenton reaction generates HO•, we observed no change in 

the products of Fe(H2O)6
2+/H2O2/(CH3)2SO reaction in the presence of added MES, as shown in 

Figure S14a [In addition to sulfinic acid and ethane, the reaction in acidic solutions also produces 

small amounts of the sulfone in a minor parallel path that does not involve Fe(IV)].S6 The lack of 

reactivity at nitrogen in acidic solutions is caused by protonation, but the rate constants for 

hydrogen atom abstraction from C-H bonds are not expected to change significantly between pH 

1 and pH 6.  The addition of H2O2 to MES in the absence of Fe(ClO4)2 also had no effect on the 

NMR spectrum of MES (Figure S14b), as expected on the basis of literature data.S7  
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Figure S14.  (a) 1H NMR spectrum of the reaction mixture after the completion of the reaction 
between Fe(ClO4)2 (1.0 mM), H2O2 (1.0 mM), and (CH3)2SO (5 mM) at pD 1 in the presence of 
5 mM MES.  The reaction generated CH3SO2H and C2H6 in amounts comparable to those 
obtained in the absence of MES.  b) Mixture of MES (5 mM) and H2O2 (1 mM), pD 1. c) MES 
(5 mM), pD 1. 
 

 We also ruled out any reaction between the buffers and Fe(IV), the actual intermediate in 

the Fenton reaction at pH ≥6, by observing that the change in buffer concentration (MES, 10 mM 

- 24 mM, pD 6.7) under standard conditions (1.2 mM Fe(II), 1.1 mM H2O2, 36 mM (CH3)2SO) 

had no effect on the yield of sulfone.  
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APPENDIX B 

Fe(II) CATALYSIS IN OXIDATION OF HYDROCARBONS WITH OZONE 

IN ACETONITRILE 
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Figure S1.  UV spectra of PhCH2OH (1), PhCOOH (2) and PhCHO (3). 
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Figure S2.  1H NMR of the products of reaction of (a) 0.048 mM Fe(II) / 1.8 mM O3 and 10 mM 
PhCH2OH, and (b) 2.1 mM O3 and 9.5 mM PhCH2OH.  Products are: (a) 1.2 mM PhCHO + 0.17 
mM PhCOOH; (b) 0.53 mM PhCHO + 0.53 mM PhCOOH + 0.48 mM H2O2. 
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Figure S3. 1H NMR of the products of reaction of 1.8 mM O3 + 9.6 mM cyclobutanol, catalyzed 
by 0.025 mM Fe(II).   
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Figure S4. 1H NMR of the products of reaction of 49 mM EtOH + 1.0 mM O3/0.06 mM Fe(II). 
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Figure S5. 1H NMR of the products of reaction of 8.5 mM Et2O + 1.2 mM O3/0.052 mM Fe(II).  
 
 
 

 
Figure S6. 1H NMR of the products of reaction of 9.6 mM DMSO + 1.9 mM O3/ 0.028 mM 
Fe(II).  
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Figure S7. 1H-NMR of products obtained by oxidation of 10 mM THF by 0.1 mM Fe(II) / 2.2 
mM O3.   
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Figure S8. Gas chromatogram of products obtained by oxidation of a mixture of PhCH2OH (5.6 
mM) and THF (7.7 mM) by 0.05 mM Fe(II) / 1.0 mM O3.  
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Figure S9. Mass spectra of the product eluted at 11.44 min for the oxidation of a mixture of 
PhCH2OH (5.6 mM) and THF (7.7 mM) with 0.05 mM Fe(II) / 1.0 mM O3. 
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Figure S10. 1H NMR of products obtained by oxidation of a mixture of PhCH2OH (5.6 mM) and 
THF (7.7 mM) by 0.05 mM Fe(II) / 1.0 mM O3.  Products are 0.54 mM PhCH2O-THFand 0.41 
mM PhCHO. 
 
 
Table S1.  Rate Constants for O3/Substrate Reactions in the Absence of Fe(II) in MeCN 
Substrate kO3/M-1s-1 
MeOH 0.24 
EtOH  3.2 
2-PrOH 13.4 
cyclobutanol 10.2 
PhCH2OH 22.1 
THF 55.3 

DMSO 118 
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Table S2. Kinetic Data for Fe(CH3CN)6

2+-Catalyzed Oxidations with Ozonea  
[Fe(II)]initial / 

μM 
[2-PrOH] /mM kobs /s-1 kcorr /s-1 [Fe(II)]final/ μM 

24 1 1 0.99 13 

26 4.2 1.35 1.29 19 

26 7 1.5 1.41 22 

27 30 2.2 1.8 23 

26 51 2.6 1.94 19 

 [EtOH]/ mM    

25 6 1.09 1.07 17 

26 15 1.45 1.41 18 

25 50 1.6 1.45 18 

 [THF] /mM    

26 4.4 1.71 1.48 19 

26 8.8 2.05 1.58 21 

 [cyclo-BuOH]/ mM    

25 4.7 1.73 1.68 18 

25 10 1.86 1.76 20 

23 30 2.07 1.77 15 

 [Et2O]/ mM    

26 5 1.15 1.1 21 

25 11 1.21 1.1 20 

25 21 1.37 1.15 21 

25 35 1.49 1.13 20 

a [O3] = 0.085-0.12 mM.  For definition of kobs and kcorr see eq 1-3 
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Table S3 Net increase in [O2] in the Fe(CH3CN)6
2+/O3/Substrate Reactions 

 

 
 
 
 
 
 

 
Figure S11. 1H NMR of the products of oxidation of C2H5OH (19 mM) and PhCH2OH (4.9 mM) 
by O3 (0.66 mM)/Fe(CH3CN)6

2+ (0.05 mM)  
 
 
 
 

Substrate /(mM) [Fe(II)]o/mM [O3]o/mM Measured 
[O2] /mM 

- 0.06 0.59 0.12 
- 0.58 0.62 0.14 
EtOH /(20) 0.057 0.58 0.35  
DMSO /(15) 0.057 0.6 0.53 
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Figure S12. 1H NMR of the products of oxidation of cyclo-C4H7OH (10 mM) + PhCH2OH 
(4.9mM) by O3 (0.73 mM)/Fe(CH3CN)6

2+ (0.05 mM) 
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Figure S13. 1H NMR of the products of oxidation of ethanol (30 mM) and cyclo-C4H7OH (10 
mM) by O3 (1.7 mM)/Fe(CH3CN)6

2+ (0.025 mM) 
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Figure S14.  1H NMR  of the products of oxidation of 2-propanol (11 mM) and cyclo-C4H7OH 
(10 mM) by O3 (0.86 mM)/Fe(CH3CN)6

2+ (0.05 mM) 
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Figure S15.  1H NMR of the products of oxidation of C2H5OH (10 mM), PhCH2OH (4.7 mM) 
and (CH3)2CHOH (9.6 mM) by O3 (1.0 mM)/Fe(CH3CN)6

2+ (0.052 mM) 
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Figure S16. 1H NMR of the products of oxidation of C2H5OC2H5 (4.7) and PhCH2OH (4.8 mM) 
by O3 (1.15 mM)/Fe(CH3CN)6

2+ (0.048 mM) 
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Figure S17.  1H NMR of the products of oxidation of 2-propanol-d1 (10 mM) and PhCH2OH 
(4.8 mM) by O3 (0.85 mM)/Fe(CH3CN)6

2+ (0.05 mM) 
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Figure S18.  1H NMR of the products of oxidation of ethyl ether-d10 (5.6 mM) and PhCH2OH 
(4.8 mM) by O3 (1.15 mM)/Fe(CH3CN)6

2+ (0.048 mM) 
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Figure S19.  1H NMR of the products of oxidation of 2-propanol-d8 (10 mM) and PhCH2OH 
(4.8 mM) by O3 (1.0 mM)/Fe(CH3CN)6

2+ (0.05 mM) 
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Figure S20.  1H NMR of the products of oxidation of C2H5OH (17 mM) and PhCD2OH (4.7 
mM) by O3 (1.1 mM)/Fe(CH3CN)6

2+ (0.048 mM) 
 

 



www.manaraa.com

       130 

 
Figure S21.  1H NMR of the products of oxidation of cyclobutanol (9.7 mM) and PhCD2OH (9.1 
mM) by O3 (1.39 mM)/Fe(CH3CN)6

2+ (0.049 mM) 
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APPENDIX C 

ELECTRON TRANSFER REACTIVITY OF AQUEOUS IRON(IV) OXO 

COMPLEX 

 

 
Table S1. Measured Rate Constants for Oxidations with FeaqO2+ Under Different Experimental 
Conditions. 
Substrate Exp # Reagents concentrations /mM kFe /M-1 s-1 Avg. kFe 

/M-1 s-1 
[Feaq

IVO2+] [substrate]  

Fe(Cp)(C5H4CH2OH) 1 0.1 0.1 6.2 x 107 
6.4 x 107 

2 0.019 0.02 6.5 x 107 

Fe(Cp)(C5H4COOH) 1 0.09 0.09 1.2 x 107 
1.2 x 107 2 0.05 0.05 1.2 x 107 

Fe(C5H4COOH)2 
1 0.02 0.08 9.3 x 105 

1.0 x 106 
2 0.026 0.07 1.1 x 106 

Ni(cyclam)2+ 
1 0.005 0.005 5.0 x 107 

4.9 x 107 
2 0.05 0.05 4.7 x 107 

Ni(hmc)2+ 
1 0.005 0.005 1.0 x 107 

1.2 x 107 
2 0.01 0.01 1.3 x 107 

Co(dmgBF2)2 
1 0.014 0.008 2.3 x 106 

2.2 x 106 2 0.016 0.016 2.2 x 106 
3 0.027 0.03 2.1 x 106 

Na3IrCl6 
1 0.034 0.012 1.1 x 106 

1.3 x 106 
2 0.012 0.06 1.5 x 106 

Os(phen)3
2+ 

1 0.05 0.01 2.3 x 105 

2.5 x 105 
2 0.033 0.0045 2.2 x 105 
3 0.028 0.0053 2.1 x 105 
4 0.012 0.0108 2.9 x 105 
5 0.018 0.019 2.8 x 105 

Ce(ClO4)3 
1 0.1 0.44 1.5 x 104 

1.5 x 104 
2 0.10 1.8 1.4 x 104 

HABTS- 
1 0.005 0.005 4.8 x 106 

4.6 x 106 
2 0.034 0.084 4.3 x 106 

TFP 1 0.02 0.02 5.3 x 106 5.3 x 106 

CPZ 
1 0.0045 0.0095 9.2 x 106 

1.2 x 107 2 0.0045 0.005 1.3 x 107 
3 0.019 0.021 1.3 x 107 

 
TFP = trifluoperazine, CPZ = chlorpromazine, HABTS- = 2,2'-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid), Cp = cyclopentadienyl, cyclam = 1,4,8,11-tetraazacyclotetradecane, hmc = 
5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. 
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Figure S1. Kinetic trace for a reaction between 0.10 mM Feaq
IVO2+ and 0.10 mM 

Fe(Cp)(C5H4CH2OH). 
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Figure S2. Kinetic trace for a reaction between 0.09 mM Feaq
IVO2+ and 0.09 mM 

Fe(Cp)(C5H4COOH). 
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Figure S3. Kinetic trace for a reaction between 0.026 mM Feaq
IVO2+ and 0.70 mM 

Fe(C5H4COOH)2. 
 

 



www.manaraa.com

       135 

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.01 0.02 0.03 0.04 0.05 0.06

A
b

s
3

0
8

 n
m

Time/s
 

 Figure S4. Kinetic trace for a reaction between 0.005 mM Feaq
IVO2+ and 0.005 mM 

Ni(cyclam)2+. 
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Figure S5. Kinetic trace for a reaction between 0.005 mM Feaq
IVO2+ and 0.005 mM Ni(hmc)2+. 
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Figure S6. Kinetic trace for a reaction between 0.014 mM Feaq
IVO2+ and 0.008 mM 

Co(dmgBF2)2. 
 
 



www.manaraa.com

       138 

0

0.01

0.02

0.03

0.04

0.05

0 0.02 0.04 0.06 0.08 0.1

A
b

s
4

8
8

 n
m

Time/s
 

Figure S7. Kinetic trace for a reaction between 0.012 mM Feaq
IVO2+ and 0.06 mM Na3IrCl6. 
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Figure S8. Kinetic trace for a reaction between 0.018 mM Feaq
IVO2+ and 0.019 mM Os(phen)3

2+. 

 
 
 
 
 
 
 
 



www.manaraa.com

       140 

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1

A
b
s

2
9
3

 n
m

Time/s
 

Figure S9. Kinetic trace for a reaction between 0.10 mM Feaq
IVO2+ and 0.44 mM Ce(ClO4)3. 
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Figure S10. Kinetic trace for a reaction between 0.005 mM Feaq
IVO2+ and 0.005 mM HABTS-. 
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Figure S11. Kinetic trace for a reaction between 0.02 mM Feaq
IVO2+ and 0.02 mM TFP. 
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Figure S12. Kinetic trace for a reaction between 0.019 mM Feaq
IVO2+ and 0.021 mM CPZ. 
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